We introduced a digital photo image analysis in color space to estimate the spectrum of fluor components dissolved in a liquid scintillator sample through the hue and wavelength relationship. Complementary metal oxide semiconductor (CMOS) image sensors with Bayer color filter array (CFA) technology in the digital camera were used to reconstruct and decode color images. Hue and wavelength are closely related. To date, no literature has reported the hue and wavelength relationship measurements, especially for blue or close to the UV region. The non-linear hue and wavelength relationship in the blue region was investigated using a light emitting diode source. We focused on this wavelength region, because the maximum quantum efficiency of the bi-alkali photomultiplier tube (PMT) is around 430 nm. It is necessary to have a good understanding of this wavelength region in PMT-based experiments. The CMOS Bayer CFA approach was sufficient to estimate the fluor emission spectrum in the liquid scintillator sample without using an expensive spectrophotometer.
In this study, a non-linear hue–wavelength (H-W) curve was investigated from 400 to 650 nm. To date, no study has reported on H-W relationship measurements, especially down to the 400 nm region. A digital camera mounted with complementary metal oxide semiconductor (CMOS) image sensors was used. The obtained digital images of the sample were based on an RGB-based imaging analysis rather than multispectral imaging or hyperspectral imaging. In this study, we focused on the raw image to reconstruct the H-W curve. In addition, several factors affecting the digital image, such as exposure time or international organization for standardization (ISO), were investigated. In addition, cross check of the H-W response using laser was performed. We expect that our method will be useful as an auxiliary method in the future for obtaining the fluor emission wavelength information.
This paper describes a practical method for obtaining the spectra of lights emitted by a fluor in a liquid scintillator (LS) using a digital camera. The emission wavelength results obtained using a digital image were compared with those obtained using a fluorescence spectrophotometer. For general users, conventional spectrophotometers are expensive and difficult to access. Moreover, their experimental measurement setup and processes are highly complicated, and they require considerable care in handling. To overcome these limitations, a feasibility study was performed to obtain the emission spectrum through image analysis. Specifically, the emission spectrum of a fluor dissolved in a liquid scintillator was obtained using digital image analysis. An image processing method was employed to convert the light irradiated during camera exposure into wavelengths. Hue (H) and wavelength (W) are closely related. Thus, we obtained an H-W response curve in the 400~450 nm wavelength region, using a light-emitting diode. Another relevant advantage of the method described in this study is its non-invasiveness in sealed LS samples. Our results showed that this method has the potential to accurately investigate the emission wavelengths of fluor within acceptable uncertainties. We envision the use of this method to perform experiments in chemistry and physics laboratories in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.