The mammalian target of rapamycin (mTOR) interacts with raptor to form the protein complex mTORC1 (mTOR complex 1), which plays a central role in the regulation of cell growth in response to environmental cues. Given that glucose is a primary fuel source and a biosynthetic precursor, how mTORC1 signaling is coordinated with glucose metabolism has been an important question. Here, we found that the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) binds Rheb and inhibits mTORC1 signaling. Under low-glucose conditions, GAPDH prevents Rheb from binding to mTOR and thereby inhibits mTORC1 signaling. High glycolytic flux suppresses the interaction between GAPDH and Rheb and thus allows Rheb to activate mTORC1. Silencing of GAPDH or blocking of the Rheb-GAPDH interaction desensitizes mTORC1 signaling to changes in the level of glucose. The GAPDH-dependent regulation of mTORC1 in response to glucose availability occurred even in TSC1-deficient cells and AMPK-silenced cells, supporting the idea that the GAPDH-Rheb pathway functions independently of the AMPK axis. Furthermore, we show that glyceraldehyde-3-phosphate, a glycolytic intermediate that binds GAPDH, destabilizes the Rheb-GAPDH interaction even under low-glucose conditions, explaining how high-glucose flux suppresses the interaction and activates mTORC1 signaling. Taken together, our results suggest that the glycolytic flux regulates mTOR's access to Rheb by regulating the Rheb-GAPDH interaction, thereby allowing mTORC1 to coordinate cell growth with glucose availability.
Endothelial physiology is regulated not only by humoral factors but also by mechanical factors such as fluid shear stress and the underlying cellular matrix microenvironment. The purpose of the present study was to examine the effects of matrix topographical cues on the endothelial secretion of cytokines/chemokines in vitro. Human endothelial cells were cultured on nanopatterned polymeric substrates with different ratios of ridge to groove widths (1:1, 1:2, and 1:5) and with different stiffnesses (6.7 MPa and 2.5 GPa) in the presence and absence of 1.0 ng/mL TNF-α. The levels of cytokines/chemokines secreted into the conditioned media were analyzed with a multiplexed bead-based sandwich immunoassay. Of the nano-patterns tested, the 1:1 and 1:2 type-patterns were found to induce the greatest degree of endothelial cell elongation and directional alignment. The 1:2 type nanopatterns lowered the secretion of inflammatory cytokines such as IL-1β, IL-3 and MCP-1, compared to unpatterned substrates. Additionally, of the two polymers tested, it was found that the stiffer substrate resulted in significant decreases in the secretion of IL-3 and MCP-1. These results suggest that substrates with specific extracellular nanotopographical cues or stiffnesses may provide anti-atherogenic effects like those seen with laminar shear stresses by suppressing the endothelial secretion of cytokines and chemokines involved in vascular inflammation and remodeling.
Background: mTORC1 integrates diverse signals including stress to control cell growth. Results: JNK phosphorylates Raptor, a component of mTORC1, and activates mTORC1 kinase upon osmotic stress. Conclusion: mTORC1 is regulated by JNK during osmotic stress. Significance: Our findings provide the JNK-Raptor relationship as a potential mechanism by which stress activates mTORC1 signaling pathway.
Cell migration, a complex biological process, requires dynamic cytoskeletal remodeling. Phospholipase D (PLD) generates phosphatidic acid, a lipid second messenger. Although PLD activity has been proposed to play a role in cytoskeletal rearrangement, the manner in which PLD participates in the rearrangement process remains obscure. In this study, by silencing endogenous PLD isozymes using small interfering RNA in HeLa cells, we demonstrate that endogenous PLD1 is required for the normal organization of the actin cytoskeleton, and, more importantly, for cell motility. PLD1 silencing in HeLa cells resulted in dramatic changes in cellular morphology, including the accumulation of stress fibers, as well as cell elongation and flattening, which appeared to be caused by an increased number of focal adhesions, which ultimately culminated in enhanced cell-substratum interactions. Accordingly, serum-induced cell migration was profoundly inhibited by PLD1-silencing. Moreover, the augmented cell substratum interaction and retarded cell migration induced by PLD1-silencing could be restored by the adding back not only of wild type, but also of lipaseinactive PLD1 into knockdown cells. Taken together, our results strongly suggest that endogenous PLD1 is a critical factor in the organization of the actin-based cytoskeleton, with regard to cell adhesion and migration. These effects of PLD1 appear to operate in a lipase activity-independent manner. We also discuss the regulation of Src family kinases by PLD1, as related to the modulation of Pyk2 and cell migration.Cell motility is an integral part of a variety of signaling and cytoskeletal processes. Embryonic development, angiogenesis, wound healing, and tumor metastasis all require cell motility (1). Cell movement on a solid substratum requires direct contact between the cell and the substratum, in order to drive the relevant mechanical forces. Focal adhesion (FA) 2 is one type of such contact, and is associated with the integrin family of adhesion receptors. This group of compounds is linked to the extracellular matrix, as well as a host of structural and regulatory molecules on the cytoplasmic side (2). Directional cell migration requires not only the generation of driving forces on existing contacts, but also the dynamic detachment of old contacts, to retract the trailing portion of the cell, and the re-establishment of new contacts, to establish subsequent cycles of force generation.Basically, the formation of FA is initiated by the ligation of integrins to their cognate extracellular matrices (3). Integrin family receptors lack apparent enzyme activity, and it is believed that the focal adhesion kinases (FAK), members of the cytosolic tyrosine kinase family which includes FAK and Pyk2 (also known as CAK/RAFTK), function in the relaying of integrin signaling (4). The regulation of FAK members is mediated largely by tyrosine phosphorylation/dephosphorylation. Activated FAK kinases phosphorylate the tyrosine residues of their respective substrates, inducing the formation ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.