We isolated a clonal cell line (4E) from kidneys of mice expressing green fluorescent protein controlled by the endothelial-specific Tie2 promoter. When grown in a three-dimensional matrigel matrix they formed a fluorescent capillary network. In vivo angiogenesis assays using growth factor-depleted matrigel implanted plugs promoted a moderate angiogenesis of host endothelial cells. Using vascular endothelial growth factor (VEGF)-A and fibroblast growth factor-2 in the plugs containing 4E-cells resulted in a robust vasculogenesis. Transplantation of 4E cells into mice with acute renal ischemia showed selective engraftment in the ischemic kidney which promoted tubular regeneration by increasing epithelial proliferation and inhibiting apoptosis. This resulted in an accelerated functional recovery 3 days after ischemia. These mice showed a 5-fold increase in tissue VEGF expression compared to controls, but no difference in plasma VEGF level corresponding with better preservation of peritubular capillaries, perhaps due to a local paracrine effect following systemic 4E infusion. One month after ischemia, 9% of engrafted 4E cells expressed green fluorescent protein in the peritubular region while half of them expressed α-smooth muscle actin. Our study shows that kidney mesenchymal stem cells are capable of differentiation toward endothelial and smooth muscle cell lineages in vitro and in vivo, support new blood vessel formation in favorable conditions and promote functional recovery of an ischemic kidney.
In November 2017, the Kidney Disease: Improving Global Outcomes (KDIGO) initiative brought a diverse panel of experts in glomerular diseases together to discuss the 2012 KDIGO glomerulonephritis guideline in the context of new developments and insights that had occurred over the years since its publication. During this KDIGO Controversies Conference on Glomerular Diseases, the group examined data on disease pathogenesis, biomarkers, and treatments to identify areas of consensus and areas of controversy. This report summarizes the discussions on primary podocytopathies, lupus nephritis, anti-neutrophil cytoplasmic antibody-associated nephritis, complementmediated kidney diseases, and monoclonal gammopathies of renal significance.
We recently demonstrated the use of in vitro expanded kidney-derived mesenchymal stem cells (KMSC) protected peritubular capillary endothelial cells in acute renal ischemia-reperfusion injury. Herein, we isolated and characterized microparticles (MPs) from KMSC. We investigated their in vitro biologic effects on human endothelial cells and in vivo renoprotective effects in acute ischemia-reperfusion renal injury. MPs were isolated from the supernatants of KMSC cultured in anoxic conditions in serum-deprived media for 24 hours. KMSC-derived MPs demonstrated the presence of several adhesion molecules normally expressed on KMSC membranes, such as CD29, CD44, CD73, α4, 5, and 6 integrins. Quantitative real time PCR confirmed the presence of 3 splicing variants of VEGF-A (120, 164, 188), bFGF and IGF-1 in isolated MPs. MPs labeled with PKH26 red fluorescence dye were incorporated by cultured human umbilical vein endothelial cells (HUVEC) via surface molecules such as CD44, CD29, and α4, 5, and 6 integrins. MP dose dependently improved in vitro HUVEC proliferation and promoted endothelial tube formation on growth factor reduced Matrigel. Moreover, apoptosis of human microvascular endothelial cell was inhibited by MPs. Administration of KMSC-derived MPs into mice with acute renal ischemia was followed by selective engraftment in ischemic kidneys and significant improvement in renal function. This was achieved by improving proliferation, of peritubular capillary endothelial cell and amelioration of peritubular microvascular rarefaction. Our results support the hypothesis that KMSC-derived MPs may act as a source of proangiogenic signals and confer renoprotective effects in ischemic kidneys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.