A tracking service like asset management is essential in a dynamic hospital environment consisting of numerous mobile assets (e.g., wheelchairs or infusion pumps) that are continuously relocated throughout a hospital. The tracking service is accomplished based on the key technologies of an indoor location-based service (LBS), such as locating and monitoring multiple mobile targets inside a building in real time. An indoor LBS such as a tracking service entails numerous resource lookups being requested concurrently and frequently from several locations, as well as a network infrastructure requiring support for high scalability in indoor environments. A traditional centralized architecture needs to maintain a geographic map of the entire building or complex in its central server, which can cause low scalability and traffic congestion. This paper presents a self-organizing and fully distributed indoor mobile asset management (MAM) platform, and proposes an architecture for multiple trackees (such as mobile assets) and trackers based on the proposed distributed platform in real time. In order to verify the suggested platform, scalability performance according to increases in the number of concurrent lookups was evaluated in a real test bed. Tracking latency and traffic load ratio in the proposed tracking architecture was also evaluated.
Abstract:The Internet of Things (IoT) opens up tremendous opportunities to provide location-based applications. However, despite the services around a user being physically adjacent, common IoT platforms use a centralized structure, like a cloud-computing architecture, which transfers large amounts of data to a central server. This raises problems, such as traffic concentration, long service latency, and high communication cost. In this paper, we propose a physical distance-based asynchronous messaging platform that specializes in processing personalized data and location-based messages. The proposed system disperses traffic using a location-based message-delivery protocol, and has high stability.
The tracking of multiple wireless mobile nodes is not easy with current legacy WSN technologies, due to their inherent technical complexity, especially when heavy traffic and frequent movement of mobile nodes are encountered. To enable mobile asset tracking under these legacy WSN systems, it is necessary to design a specific system architecture that can manage numerous mobile nodes attached to mobile assets. In this paper, we present a practical system architecture including a communication protocol, a three-tier network, and server-side middleware for mobile asset tracking in legacy WSNs consisting of mobile-stationary co-existing infrastructures, and we prove the functionality of this architecture through careful evaluation in a test bed. Evaluation was carried out in a microwave anechoic chamber as well as on a straight road near our office. We evaluated communication mobility performance between mobile and stationary nodes, location-awareness performance, system stability under numerous mobile node conditions, and the successful packet transfer rate according to the speed of the mobile nodes. The results indicate that the proposed architecture is sufficiently robust for application in realistic mobile asset tracking services that require a large number of mobile nodes.
Indoor location-based services (iLBS) are extremely dynamic and changeable, and include numerous resources and mobile devices. In particular, the network infrastructure requires support for high scalability in the indoor environment, and various resource lookups are requested concurrently and frequently from several locations based on the dynamic network environment. A traditional map-based centralized approach for iLBSs has several disadvantages: it requires global knowledge to maintain a complete geographic indoor map; the central server is a single point of failure; it can also cause low scalability and traffic congestion; and it is hard to adapt to a change of service area in real time. This paper proposes a self-organizing and fully distributed platform for iLBSs. The proposed self-organizing distributed platform provides a dynamic reconfiguration of locality accuracy and service coverage by expanding and contracting dynamically. In order to verify the suggested platform, scalability performance according to the number of inserted or deleted nodes composing the dynamic infrastructure was evaluated through a simulation similar to the real environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.