BackgroundThe prevalence of hepatitis C virus (HCV) infections in elderly patients has been increasing in a number of countries. A few reports concerning pegylated interferon-α (PEG-IFN-α)-based combination treatment in elderly chronic hepatitis C (CHC) patients have been published, with slightly different treatment outcomes.ObjectivesWe investigated the treatment response and safety of PEG-IFN-α plus ribavirin combination therapy in elderly patients with CHC.Patients and MethodsAmong a total of 181 treatment-naïve CHC patients (60 patients with genotype 1, 121 patients with genotype 2 or 3), 38 were aged ≥ 65 years (defined as the elderly group) and 143 were aged < 65 years (defined as the non-elderly group).ResultsThe overall sustained virologic response (SVR) was lower in the elderly group than in the non-elderly group, but it was not significantly different (65.8 % vs. 76.2 %, P = 0.15). In a subgroup analysis, among patients with genotype 1, the elderly group had a significantly lower SVR rate than the non-elderly group (30.8 % vs. 66.0 %, P = 0.03). However, the SVR rate in patients with HCV genotype 2 or 3 was comparable between the two groups (84.0 % vs. 81.3 %, P = 0.85). HCV genotype was significantly associated with SVR in the elderly patients (genotype 1 vs. 2 or 3, odds ratio: 0.18, 95% confidence interval: 0.000-0.869, P = 0.03). The incidence of premature discontinuation of treatment (21.1 % vs. 9.1 %, P = 0.05) and dose modification (52.6 % vs. 31.5 %; P = 0.02) due mainly to adverse events or laboratory abnormalities, were higher in the elderly group than in the non-elderly group.ConclusionsPEG-IFN-α plus ribavirin combination therapy might be considered for elderly CHC patients, especially for genotype 2 or 3, with vigilant monitoring of adverse events.
Recent development in wireless communication technology like GPS as well as mobile equipments like PDA and cellular phone makes location-based services (LBSs) popular. However, because users request a query to LBS servers by using their exact locations while moving on the road network, users' privacy may not be protected in the LBSs. Therefore, a mechanism for users' privacy protection is required for the safe and comfortable use of LBSs by mobile users. For this, we, in this paper, propose a road network distance based cloaking scheme supporting user privacy protection in location-based services. The proposed scheme creates a cloaking area by considering road network distance, in order to support the efficient and safe LBSs on the road network. Finally, we show from our performance analysis that our cloaking scheme outperforms the existing cloaking scheme in terms of cloaking area and service time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.