Alopecia areata (AA) is an inflammatory hair loss of unknown etiology. AA is chronic and relapsing, and no effective cure or preventive treatment has been established. Vitamin D was recently reported to be important in cutaneous immune modulation as well as calcium regulation and bone metabolism. It is well known that areata is common clinical finding in patients with vitamin D deficiency, vitamin D-resistant rickets, or vitamin D receptor (VDR) mutation. The biological actions of vitamin D3 derivatives include regulation of epidermal cell proliferation and differentiation and modulation of cytokine production. These effects might explain the efficacy of vitamin D3 derivatives for treating AA. In this study, we report a 7-year-old boy with reduced VDR expression in AA, recovery of whom was observed by topical application of calcipotriol, a strong vitamin D analog.
Alcoholic liver disease is a major cause of chronic liver disease worldwide, and cannabinoid receptor type 1 (CB1R) is involved in a diverse metabolic diseases. B-cell translocation gene 2 (BTG2) and yin yang 1 (YY1) are a potent regulator of biological conditions. Melatonin plays a crucial role in regulating diverse physiological functions and metabolic homeostasis. MicroRNAs are key regulators of various biological processes. Herein, we demonstrate that melatonin improves bile acid synthesis in the liver of alcohol-fed mice by controlling miR-497 expression. The level of bile acid and the expression of Cb1r, Btg2, Yy1, and bile acid synthetic enzymes were significantly elevated in the livers of Lieber-DeCarli alcohol-fed mice. The overexpression of Btg2 enhanced Yy1 gene expression and bile acid production, whereas disrupting the CB1R-BTG2-YY1 cascade protected against the bile acid synthesis caused by alcohol challenge. We identified an alcohol-mediated YY1 binding site on the cholesterol 7α-hydroxylase (Cyp7a1) gene promoter using promoter deletion analysis and chromatin immunoprecipitation assays. Notably, melatonin attenuated the alcohol-stimulated induction of Btg2, Yy1 mRNA levels and bile acid production by promoting miR-497. Overexpression of a miR-497 mimic dramatically diminished the increase of Btg2 and Yy1 gene expression as well as bile acid production by alcohol, whereas this phenomenon was reversed by miR-497 inhibitor. These results demonstrate that the upregulation of miR-497 by melatonin represses alcoholinduced bile acid synthesis by attenuating the BTG2-YY1 signaling pathway. The melatonin-miR497 signaling network may provide novel therapeutic targets for the treatment of hepatic metabolic dysfunction caused by the alcohol-dependent pathway.
Berberine, an isoquinoline alkaloid, has a wide range of beneficial properties, including anti-bacterial, anti-inflammatory, anti-cancer, and cholesterol-lowering effects. Recently findings suggest that berberine improves glucose and lipid metabolism disorders. In the present study, we examined the mechanism underlying the inhibitory effect of berberine on α-melanocyte-stimulating hormone (α-MSH)-stimulated B16F10 melanoma cells. The results showed that berberine attenuated α-MSH induction of the microphthalmia-associated transcription factor (MITF) and tyrosinase in a dose-dependent manner. To elucidate the mechanism underlying the inhibitory effect of berberine, we examined the effect of α-MSH-stimulated phosphorylation of PI3K/AKT, ERK, and GSK3β. The results showed that treatment with berberine resulted in a reduction in the phosphorylation of PI3K/AKT, ERK, and GSK3β. Taken together, the results suggested that berberine inhibits melanin synthesis and tyrosinase activity by downregulating the expression of MITF and tyrosinase. Thus, these findings may contribute to the potential application of berberine in the prevention and treatment of skin pigmentation disorders.
Disk microneedle rollers, as designed for the DTS™, can be used for transdermal drug delivery. Microneedles can be selected according to the length appropriate for each application.
BackgroundKeratinocytes release various pro-inflammatory cytokines, chemokines, and adhesion molecules such as intercellular adhesion molecule 1 (ICAM-1) in response to cytokines such as tumor necrosis factor (TNF)-α and interferon (IFN)-γ. Rapamycin and mycophenolic acid (MPA) have potent immunosuppressive activity because they inhibit lymphocyte proliferation.ObjectiveWe investigated the effects of rapamycin and MPA on the expression of inflammation-related factors such as ICAM-1 and inducible nitric oxide synthase (iNOS), pro-inflammatory cytokines and chemokines, and related signaling pathways in TNF-α-stimulated HaCaT cells.MethodsThe viability of HaCaT cells treated with rapamycin and MPA was confirmed using MTT assay. The expression of various cytokines such as interleukin (IL)-1β, IL-6, and IL-8; inflammation-related factors such as ICAM-1 and iNOS; and the activation of mitogen activated protein kinase (MAPK) signaling pathways mediated by extracellular signal-related kinases (ERK), p38, and c-Jun N-terminal kinases (JNK) in TNF-α-stimulated HaCaT cells were confirmed using reverse transcription-polymerase chain reaction and western blotting.ResultsCombined treatment of TNF-α-induced HaCaT cells with rapamycin and MPA decreased ICAM-1 and iNOS expression and ERK and p38 activation more than treatment with either drug alone. The most significant decrease was observed with a combination of rapamycin (80 nM) and MPA (20 nM). These results show that co-treatment with these agents has a synergistic anti-inflammatory effect by blocking the activation of the ERK/p38 MAPK signaling pathway and thus suppressing the TNF-α-induced expression of ICAM-1 and iNOS.ConclusionThe combination of rapamycin and MPA could potentially be used as a therapeutic approach in inflammatory skin diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.