The use of portable X-ray fluorescence (PXRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES) increases the rapidity and accuracy of soil contamination mapping, respectively. In practice, it is often necessary to repeat the soil contamination assessment and mapping procedure several times during soil management within a limited budget. In this study, we have developed a rapid, inexpensive, and accurate soil contamination mapping method using a PXRF data and geostatistical spatial interpolation. To obtain a large quantity of high quality data for interpolation, in situ PXRF data analyzed at 40 points were transformed to converted PXRF data using the correlation between PXRF and ICP-AES data. The method was applied to an abandoned mine site in Korea to generate a soil contamination map for copper and was validated for investigation speed and prediction accuracy. As a result, regions that required soil remediation were identified. Our method significantly shortened the time required for mapping compared to the conventional mapping method and provided copper concentration estimates with high accuracy similar to those measured by ICP-AES. Therefore, our method is an effective way of mapping soil contamination if we consistently construct a database based on the correlation between PXRF and ICP-AES data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.