This paper describes Monolithic Microwave Integrated Circuits (MMICs) for an X-band radar transceiver front-end implemented in 0.25 μm GaN High Electron Mobility Transistor (HEMT) technology. Two versions of single pole double throw (SPDT) T/R switches are introduced to realize a fully GaN-based transmit/receive module (TRM), each of which achieves an insertion loss of 1.21 dB and 0.66 dB at 9 GHz, IP1dB higher than 46.3 dBm and 44.7 dBm, respectively. Therefore, it can substitute a lossy circulator and limiter used for a conventional GaAs receiver. A driving amplifier (DA), a high-power amplifier (HPA), and a robust low-noise amplifier (LNA) are also designed and verified for a low-cost X-band transmit-receive module (TRM). For the transmitting path, the implemented DA achieves a saturated output power (Psat) of 38.0 dBm and output 1-dB compression (OP1dB) of 25.84 dBm. The HPA reaches a Psat of 43.0 dBm and power-added efficiency (PAE) of 35.6%. For the receiving path, the fabricated LNA measures a small-signal gain of 34.9 dB and a noise figure of 2.56 dB, and it can endure higher than 38 dBm input power in the measurement. The presented GaN MMICs can be useful in implementing a cost-effective TRM for Active Electronically Scanned Array (AESA) radar systems at X-band.
We present a W-band 8-way wideband power amplifier (PA) for a high precision frequency modulated continuous wave (FMCW) radar in 65-nm CMOS technology. To achieve a broadband operation with an improved output power for a high range resolution and high distance coverage of FMCW radar sensors, a balanced architecture is employed with the Lange coupler which naturally combines the output powers from two 4-way push-pull PAs. By utilizing a transformer-based push-pull structure with a cross-coupled capacitive neutralization technique, the gate-drain capacitance of the 4-way PA is compensated for the stabilization with an improved power gain. Interstage matching was performed with transformers for a reduced loss from the matching network and minimal area occupation. The implemented balanced 8-way PA achieved a saturated output power (Psat) of 16.5 dBm, a 1-dB compressed output power (OP1dB) of 13.3 dBm, a power-added efficiency (PAE) of 9.9% at 90 GHz and 3-dB power bandwidth was 20.4 GHz (79.2–99.6 GHz).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.