We report using MALDI-ISD (in-source decay) mass spectrometry (MS) to characterize highly branched synthetic polymers of polyamidoamine (PAMAM) dendrimer. This inherently monodisperse polymer possesses dendritic branches networked by tertiary amines and an amide functionality in each repeating unit. Among various ISD matrices examined, 2,5-DHB was the most efficient, yielding 33 fragments produced by single-or multiple-bond cleavages. Detailed analysis revealed that cleavages at tertiary amine sites (S-and E-type fragments) were the most pronounced, with various other cleavages around amide groups. The fragmentation mechanism appeared to follow the radical-induced dissociation pathway. In addition, the matrix dependence of PAMAM MALDI-ISD differed from that of peptides/proteins. The observed fragments provided rich structural information, which was suitable to characterize dendritic polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.