The Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) is an international public repository for high-throughput microarray and next-generation sequence functional genomic data sets submitted by the research community. The resource supports archiving of raw data, processed data and metadata which are indexed, cross-linked and searchable. All data are freely available for download in a variety of formats. GEO also provides several web-based tools and strategies to assist users to query, analyse and visualize data. This article reports current status and recent database developments, including the release of GEO2R, an R-based web application that helps users analyse GEO data.
The first step in the biogenesis of microRNAs is the processing of primary microRNAs (pri-miRNAs) by the microprocessor complex, composed of the RNA binding protein DGCR8 and the ribonuclease type III DROSHA1–4. This initial event requires the recognition of the junction between the stem and the flanking single-stranded RNA of the pri-miRNA hairpin by DGCR8 followed by recruitment of DROSHA, which cleaves the RNA duplex to yield the pre-miRNA product5. While the mechanisms underlying pri-miRNA processing have been elucidated, the mechanism by which DGCR8 recognizes and binds pri-miRNAs as opposed to other secondary structures present in transcripts is not understood. We find that methyltransferase like 3 (METTL3) methylates pri-miRNAs, marking them for recognition and processing by DGCR8. Consistent with this, METTL3 depletion reduced the binding of DGCR8 to pri-miRNAs and resulted in the global reduction of mature miRNAs and concomitant accumulation of unprocessed pri-miRNAs. In vitro processing reactions confirmed the sufficiency of the m6A mark in promoting pri-miRNA processing. Finally, gain-of-function experiments revealed that METTL3 is sufficient to enhance miRNA maturation in a global and non-cell-type specific manner. Our findings reveal that the m6A mark acts as a key post-transcriptional modification that promotes the initiation of miRNA biogenesis.
SUMMARY N6-methyladenosine (m6A) is the most abundant internal modification of messenger RNA. While the presence of m6A on transcripts can impact alternative splicing, a nuclear reader of this mark that mediates the processing of nuclear transcripts has not been identified. We find that the RNA-binding HNRNPA2B1 protein binds m6A-bearing RNAs in vivo and in vitro and its biochemical footprint matches the m6A consensus motif. HNRNPA2B1 directly binds a set of nuclear transcripts and modulates their alternative splicing in a similar manner as the m6A ‘writer’ METTL3. Moreover, HNRNPA2B1 binds to m6A marks in a subset of primary-miRNA transcripts, interacts with the microRNA Microprocessor complex protein DGCR8, and promotes primary miRNA processing—phenocopying the effect of METTL3 depletion on the processing of these precursor transcripts. We propose HNRNPA2B1 to be a nuclear reader of the m6A mark and to mediate, in part, this mark’s effects on primary microRNA processing and alternative splicing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.