Environmentally friendly control measures are needed for suppression of soilborne pathogens of vegetable crops in the Republic of Korea. In vitro challenge assays were used to screen approximately 500 bacterial isolates from 20 Korean greenhouse soils for inhibition of diverse plant pathogens. One isolate, Bacillus subtilis ME488, suppressed the growth of 39 of 42 plant pathogens tested. Isolate ME488 also suppressed the disease caused by Fusarium oxysporum f. sp. cucumerinum on cucumber and Phytophthora capsici on pepper in pot assays. Polymerase chain reaction was used to screen isolate ME488 for genes involved in biosynthesis of 11 antibiotics produced by various isolates of B. subtilis. Amplicons of the expected sizes were detected for bacD and bacAB, ituC and ituD, and mrsA and mrsM involved in the biosynthesis of bacilysin, iturin, and mersacidin, respectively. The identity of these genes was confirmed by DNA sequence analysis of the amplicons. Bacilysin and iturin were detected in culture filtrates from isolate ME488 by gas chromatography coupled with mass spectroscopy and by thin layer chromatography, respectively. Detection of mersacidin in ME488 culture filtrates was not attempted. Experiments reported here indicate that B. subtilis ME488 has potential for biological control of pathogens of cucumber and pepper possibly due to the production of antibiotics.
Herein, we present data demonstrating that the application of initial cell culture enrichment could significantly improve mycoplasma testing methods based on the nucleic acid amplification technology (NAT) including a polymerase chain reaction (PCR)/microarray method. The results of the study using Vero cells demonstrated that this cell culture is able (1) to support efficient growth of mycoplasmas of primary interest, i.e., species found to be cell line contaminants, (2) to increase the sensitivity of NAT assay to the detection limits of the conventional broth/agar culture methods, and (3) to reduce the time required for mycoplasma testing fourfold in comparison with the conventional methods. Detection and identification of mycoplasmal agents were conducted using a modified PCR/microarray assay based on genetic differences among Mollicutes in the 16S-23S rRNA intergenic transcribed spacer (ITS). The application of nano-gold/silver enhancement technology instead of previously used fluorescent dyes significantly simplified the readout of microarray results and allowed us to avoid using expensive scanning equipment. This modification has the potential to expand the implementation of microarray techniques into laboratories involved in diagnostic testing of mycoplasma contamination in cell substrates and potentially in other biological and pharmaceutical products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.