Continuous monitoring of an arterial pulse using a pressure sensor attached on the epidermis is an important technology for detecting the early onset of cardiovascular disease and assessing personal health status. Conventional pulse sensors have the capability of detecting human biosignals, but have significant drawbacks of power consumption issues that limit sustainable operation of wearable medical devices. Here, a self-powered piezoelectric pulse sensor is demonstrated to enable in vivo measurement of radial/carotid pulse signals in near-surface arteries. The inorganic piezoelectric sensor on an ultrathin plastic achieves conformal contact with the complex texture of the rugged skin, which allows to respond to the tiny pulse changes arising on the surface of epidermis. Experimental studies provide characteristics of the sensor with a sensitivity (≈0.018 kPa ), response time (≈60 ms), and good mechanical stability. Wireless transmission of detected arterial pressure signals to a smart phone demonstrates the possibility of self-powered and real-time pulse monitoring system.
A flexible single-crystalline PMN-PT piezoelectric energy harvester is demonstrated to achieve a self-powered artificial cardiac pacemaker. The energy-harvesting device generates a short-circuit current of 0.223 mA and an open-circuit voltage of 8.2 V, which are enough not only to meet the standard for charging commercial batteries but also for stimulating the heart without an external power source.
Microarray gene expression analysis was successfully used to predict complete responses to preoperative chemoradiotherapy in patients with advanced rectal cancer.
Additional surgeries for implantable biomedical devices are inevitable to replace discharged batteries, but repeated surgeries can be a risk to patients, causing bleeding, inflammation, and infection. Therefore, developing self-powered implantable devices is essential to reduce the patient's physical/psychological pain and financial burden. Although wireless communication plays a critical role in implantable biomedical devices that contain the function of data transmitting, it has never been integrated with in vivo piezoelectric self-powered system due to its high-level power consumption (microwatt-scale). Here, wireless communication, which is essential for a ubiquitous healthcare system, is successfully driven with in vivo energy harvesting enabled by high-performance single-crystalline (1 − x)Pb(Mg 1/3 Nb 2/3 )O 3 −(x)Pb(Zr,Ti)O 3 (PMN-PZT). The PMN-PZT energy harvester generates an open-circuit voltage of 17.8 V and a short-circuit current of 1.74 µA from porcine heartbeats, which are greater by a factor of 4.45 and 17.5 than those of previously reported in vivo piezoelectric energy harvesting. The energy harvester exhibits excellent biocompatibility, which implies the possibility for applying the device to biomedical applications.
Flexible piezoelectric energy harvesters have been regarded as an overarching candidate for achieving self-powered electronic systems for environmental sensors and biomedical devices using the self-sufficient electrical energy. In this research, we realize a flexible high-output and lead-free piezoelectric energy harvester by using the aerosol deposition method and the laser lift-off process. We also investigated the comprehensive biocompatibility of the lead-free piezoceramic device using ex-vivo ionic elusion and in vivo bioimplantation, as well as in vitro cell proliferation and histologic inspection. The fabricated LiNbO3-doped (K,Na)NbO3 (KNN) thin film-based flexible energy harvester exhibited an outstanding piezoresponse, and average output performance of an open-circuit voltage of ∼130 V and a short-circuit current of ∼1.3 μA under normal bending and release deformation, which is the best record among previously reported flexible lead-free piezoelectric energy harvesters. Although both the KNN and Pb(Zr,Ti)O3 (PZT) devices showed short-term biocompatibility in cellular and histological studies, excessive Pb toxic ions were eluted from the PZT in human serum and tap water. Moreover, the KNN-based flexible energy harvester was implanted into a porcine chest and generated up to ∼5 V and 700 nA from the heartbeat motion, comparable to the output of previously reported lead-based flexible energy harvesters. This work can compellingly serve to advance the development of piezoelectric energy harvesting for actual and practical biocompatible self-powered biomedical applications beyond restrictions of lead-based materials in long-term physiological and clinical aspects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.