The generation of concentration gradients is an essential part of a wide range of laboratory settings. However, the task usually requires tedious and repetitive steps and it is difficult to generate concentration gradients at once. Here, we present a microfluidic device that easily generates a concentration gradient by means of push-button actuated pumping units. The device is designed to generate six concentrations with a linear gradient between two different sample solutions. The microfluidic concentration gradient generator we report here does not require external pumps because changes in the pressure of the fluidic channel induced by finger actuation generate a constant volume of fluid, and the design of the generator is compatible with the commonly used 96-well microplate. Generation of a concentration gradient by the finger-actuated microfluidic device was consistent with that of the manual pipetting method. In addition, the amount of fluid dispensed from each outlet was constant when the button was pressed, and the volume of fluid increased linearly with respect to the number of pushing times. Coefficient of variation (CV) was between 0.796% and 13.539%, and the error was between 0.111% and 19.147%. The design of the microfluidic network, as well as the amount of fluid dispensed from each outlet at a single finger actuation, can be adjusted to the user’s demand. To prove the applicability of the concentration gradient generator, an enzyme assay was performed using alkaline phosphatase (ALP) and para-nitrophenyl phosphate (pNPP). We generated a linear concentration gradient of the pNPP substrate, and the enzyme kinetics of ALP was studied by examining the initial reaction rate between ALP and pNPP. Then, a Hanes–Woolf plot of the various concentration of ALP was drawn and the Vmax and Km value were calculated.
In tissue engineering and wound-healing applications, dermal substitutes are used to provide fibroblasts with the mechanical support for their growth and then to facilitate the skin formation. In this study, three-dimensional porous poly(lactic-co-glycolic acid) (PLGA) 65/35 scaffolds were prepared and then the composites of the scaffolds and human fetal dermal fibroblasts were fabricated as a tissue-engineered dermal substitute. The function and tissue compatibility of the artificial dermal substitute were evaluated at the levels of gene expression (by RT-PCR) and protein expression (total collagen quantities), as well as by histological and immunohistochemical analysis. The PCR products indicated that the mRNA of type-I collagen, mainly secreted by the fibroblasts onto the PLGA scaffolds, was clearly expressed after 4 weeks. The amount of total collagen synthesized from the cells was shown to increase gradually during the initial culture period and slightly decreased afterwards. After 8 weeks of culture, the fibroblasts were well attached and migrated entirely throughout the pores of the PLGA scaffold with normal function. Furthermore, the positively stained type-I collagen was intensively detected throughout the pores. These results suggest that the function and tissue compatibility may be important criteria in evaluating an artificial tissue-engineered skin.
Hanging drop plates and low-attachment well plates are suitable for a high throughput screening model of a spheroid, because each drop (or well) contains a single spheroid and the spheroid...
Spheroid, a 3D aggregate of tumor cells in a spherical shape, has overcome the limitations of conventional 3D cell models to accurately mimic the in-vivo environment of a human body. The spheroids are cultured with other primary cells and embedded in collagen drops using hang drop plates and low-attachment well plates to construct a spheroid–hydrogel model that better mimics the cell–cell and cell–extracellular matrix (ECM) interactions. However, the conventional methods of culturing and embedding spheroids into ECM have several shortcomings. The procedure of transferring a single spheroid at a time by manual pipetting results in well-to-well variation and even loss or damage of the spheroid. Based on the previously introduced droplet contact-based spheroid transfer technique, we present a poly(dimethylsiloxane) and resin-based drop array chip and a pillar array chip with alignment stoppers, which enhances the alignment between the chips for uniform placement of spheroids. This method allows the facile and stable transfer of the spheroid array and even eliminates the need for a stereomicroscope while handling the cell models. The novel platform demonstrates a homogeneous and time-efficient construction and diverse analysis of an array of fibroblast-associated glioblastoma multiforme spheroids that are embedded in collagen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.