Cytochrome P450BM-3, a catalytically self-sufficient monooxygenase from Bacillus megaterium, catalyzes the omega-n (n = 1-3) hydroxylation of fatty acids in the presence of O2 and NADPH. Like most other P450s, cytochrome P450BM-3 contains a threonine residue (Thr268) in the distal I helix thought to be important for O2 binding and activation. Thr268 has been converted to alanine and the enzymatic properties and heme domain crystal structure determined. Using sodium laurate as the substrate, the mutant exhibited slower rates of O2 and NADPH consumption. In addition, electron transfer is uncoupled from substrate hydroxylation as evidenced by the greater production of water and peroxide in the mutant compared to the wild-type enzyme. The crystal structure of the mutant reveals that the only changes in structure are confined to the site of mutation. These data indicate an important role for Thr268 in O2 binding and activation in the metabolism of sodium laurate by cytochrome P450BM-3.
Resonance Raman spectra are reported for both the heme domain and holoenzyme of cytochrome P450BM3 in the resting state and for the ferric NO, ferrous CO, and ferrous NO adducts in the absence and presence of the substrate, palmitate. Comparison of the spectrum of the palmitate-bound form of the heme domain with that of the holoenzyme indicates that the presence of the flavin reductase domain alters the structure of the heme domain in such a way that water accessibility to the distal pocket is greater for the holoenzyme, a result that is consistent with analogous studies of cytochrome P450cam. The data for the exogenous ligand adducts are compared to those previously reported for corresponding derivatives of cytochrome P450cam and document significant and important differences for the two proteins. Specifically, while the binding of substrate induces relatively dramatic changes in the nu(Fe-XY) modes of the ferrous CO, ferric NO, and ferrous NO derivatives of cytochrome P450cam, no significant changes are observed for the corresponding derivatives of cytochrome P450BM3 upon binding of palmitate. In fact, the spectral data for substrate-free cytochrome P450BM3 provide evidence for distortion of the Fe-XY fragment, even in the absence of substrate. This apparent distortion, which is nonexistent in the case of substrate-free cytochrome P450cam, is most reasonably attributed to interaction of the Fe-XY fragment with the F87 phenylalanine side chain. This residue is known to lie very close to the heme iron in the substrate-free derivative of cytochrome P450BM3 and has been suggested to prevent hydroxylation of the terminal, omega, position of long-chain fatty acids.
We have investigated factors that influence the properties of the zinc binding site in yeast copper-zinc superoxide dismutase (CuZnSOD). The properties of yeast CuZnSOD are essentially invariant from pH 5 to pH 9. However, below this pH range there is a change in the nature of the zinc binding site which can be interpreted as either (1) a change in metal binding affinity from strong to weak, (2) the expulsion of the metal bound at this site, or (3) a transition from a normal distorted tetrahedral ligand orientation to a more symmetric arrangement of ligands. This change is strongly reminiscent of a similar pH-induced transition seen for the bovine protein and, based on the data presented herein, is proposed to be a property that is conserved among CuZnSODs. The transition demonstrated for the yeast protein is not only sensitive to the pH of the buffering solution but also to the occupancy and redox status of the adjacent copper binding site. Furthermore, we have investigated the effect of single site mutations on the pH- and redox-sensitivity of Co2+ binding at the zinc site. Each of the mutants H46R, H48Q, H63A, H63E, H80C, G85R, and D83H is capable of binding Co2+ to a zinc site with a distorted tetrahedral geometry similar to that of wild-type. However, they do so only if Cu+ is bound at the copper site or if the pH in raised to near physiological levels, indicating that the change at the zinc binding site seen in the wild-type is conserved in the mutants, albeit with an altered pKa. The mutants H71C and D83A did not bind Co2+ in a wild-type-like fashion under any of the conditions tested. This study reveals that the zinc binding site is exquisitely sensitive to changes in the protein environment. Since three of the mutant yeast proteins investigated here contain mutations analogous to those that cause ALS (amyotrophic lateral sclerosis) in humans, this finding implicates improper metal binding as a mechanism by which CuZnSOD mutants exert their toxic gain of function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.