Carboxylated cellulose nanofibers, prepared by TEMPO-mediated oxidation (TOCN), were processed into asymmetric mesoporous membranes using a facile paper-making approach and investigated as lithium ion battery separators. Membranes made of TOCN with sodium carboxylate groups (TOCN-COO–Na+) showed capacity fading after a few cycles of charging and discharging. On the other hand, its protonated counterpart (TOCN-COOH) showed highly improved electrochemical and cycling stability, displaying 94.5% of discharge capacity maintained after 100 cycles at 1 C rate of charging and discharging. The asymmetric surface porosity of the membranes must be considered when assembling a battery cell as it influences the rate capabilities of the battery. The wood-based TOCN-membranes have a good potential as an ecofriendly alternative to conventional fossil fuel-derived separators without adverse side effects.
Chemical modification of cellulose is beneficial to produce highly porous lithium-ion battery (LIB) separators, but introduction of high charge density adversely affects its electrochemical stability in a LiNi 1/3 Mn 1/3 Co 1/3 O 2 (NMC)/graphite full cell. In this study, the influence of carboxylate functional groups in 2,2,6,6-tetramethylpiperidine-1-oxyl-mediated oxidized cellulose nanofibers (TOCNs) on the electrochemical performances of the LIB separator was investigated. X-ray photoelectron spectroscopy and in operando mass spectrometry measurements were used to elucidate the cause of failure of the batteries containing TOCN separators in the presence and absence of sodium counterions in the carboxylate groups and additives. For the TOCN separator with sodium carboxylate functional groups, it seems that Na deposition is the dominant reason for poor electrochemical stability of the cell thereof. The poor performance of the protonated TOCN separator, attributed to a high amount of gas evolution, is dramatically improved by adding 2 wt % of vinylene carbonate (VC) because of suppressed gas evolution. Unveiling the failure mechanism of the TOCN separators and successively implementing the strategies to improve performance, for example, removing Na, adding VC, and adjusting cycling rates, enable a remarkable cycling performance in the NMC/graphite full cell at ≈2 C (3 mA/cm 2 ) of a fast discharging rate. Despite the aforementioned efforts and compromises required, an increased charge density of the TOCN is beneficial to acquire a mechanically stronger separator. In conclusion, the manufacturing process of cellulose nanofibers needs to be carefully adjusted to acquire a desired separator property. To the best of our knowledge, it is first reported to perform operando gas evolution measurements to systematically investigate the electrochemical stability of nanocellulose as an LIB separator material. The results elucidate not only the challenges for extensive applications of hygroscopic biomaterials for commercial LIBs but also the practical solutions to achieve high electrochemical stability of the materials.
TEMPO-oxidized cellulose nanofibrils (TOCN) are pH-responsive biopolymers which undergo sol−gel transition at acidic conditions (pH < 4) due to charge neutralization. Electronically conducting materials can be coated by such gels during aqueous electrolysis, when an electrochemical reaction generates a local pH decrease at the electrode surface. In this work, electro-precipitation of different TOCN gels has been performed on oxygen evolving anodes. We demonstrate that TOCN hydrogels can be electrochemically coated on the surface of any conductive material with even complex 3D shape. Further, not only TOCN but also micro-or nanosized particles containing TOCN composites can be coated on the electrode surface, and coatings containing multiple layers of different composites can be also produced. We demonstrate that this simple and facile electrocoating technique can be subject to various applications, such as coatings making electrodes selective for the hydrogen evolution reaction, as well as a new eco-friendly aqueous-based synthesis of Li-ion battery electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.