The impact of CYP3A and MDR1 gene single-nucleotide polymorphisms on long-term tacrolimus disposition and drug-related toxicity has not been assessed. A study was performed in 95 genotyped recipients by measuring (12 and 4 h) concentration-time curves on day 7; 3, 6 months; 1, 2, 3, 4, and 5 years after transplantation. In contrast to recipients carrying the CYP3A4*1/CYP3A5*1 or CYP3A4*1B/CYP3A5*1 genotypes, dose-corrected tacrolimus exposure almost doubled over 5 years in patients with the CYP3A4*1/ CYP3A5*3 genotype (AUC(0-12 h): from 41.7+/-18.7 to 80+/-39.2 ng h/ml/mg; P<0.05), whereas apparent oral steady-state clearance and dose requirements significantly decreased accordingly. The CYP3A4*1/CYP3A5*1 and CYP3A4*1B/CYP3A5*1 genotypes were significantly more frequently associated with the development of biopsy-proven tacrolimus-related nephrotoxicity than the CYP3A4*1/ CYP3A5*3 genotype (37.5 vs 11.2%; P=0.03 and 42.8 vs 11.2%; P=0.02). The lack of a time-related increase in dose-corrected tacrolimus exposure observed with the CYP3A4*1/CYP3A5*1 and CYP3A4*1B/CYP3A5*1 genotypes is associated with tacrolimus-related nephrotoxicity, possibly as a result of higher concentrations of toxic metabolites.
The resistive index, routinely measured at predefined time points after transplantation, reflects characteristics of the recipient but not those of the graft. (ClinicalTrials.gov number, NCT01879124 .).
Tacrolimus is metabolized by CYP3A4 and CYP3A5 and is characterized by a narrow therapeutic index and highly variable pharmacokinetics. This cross-sectional study in 59 renal transplant patients investigated the relationship among in vivo CYP3A4 activity (assessed using midazolam as a drug probe), CYP3A5 genotype on the one hand, and tacrolimus pharmacokinetics on the other hand, taking into account other potential determinants of tacrolimus disposition. In vivo CYP3A4 activity and CYP3A5 genotype explain 56-59% of variability in tacrolimus dose requirements and clearance, contributing ~25 and 30%, respectively. Hematocrit explains an additional 4-14%. These data indicate that CYP3A4- and CYP3A5-mediated tacrolimus metabolisms are major determinants of tacrolimus disposition in vivo and explain a substantial part of the clinically observed high interindividual variability in tacrolimus pharmacokinetics. Furthermore, these data provide a potential basis for a comprehensive approach to predicting tacrolimus dose requirement in individual patients and hence provide a strategy to tailor immunosuppressive therapy in transplant recipients.
The contributions of donor kidney quality (partially determined by donor age), allograft rejection, and calcineurin inhibitor nephrotoxicity on the progression of histologic damage of renal allografts are not completely defined. Moreover, the determinants of individual susceptibility to calcineurin inhibitor nephrotoxicity are not known but may include variability in drug transport and metabolism. In a prospective cohort of 252 adult renal allograft recipients treated with a combination of tacrolimus, mycophenolate mofetil, and corticosteroids, we studied 744 renal allograft biopsies obtained regularly from time of transplantation for 3 yr. We assessed determinants of histologic evolution, including tacrolimus exposure, renal P-glycoprotein (ABCB1) expression, and polymorphisms in the CYP3A4, CYP3A5, and ABCB1 genes. Within the first 3 yr after transplantation, we noted a progressive increase in interstitial fibrosis, tubular atrophy, glomerulosclerosis, and vascular intimal thickening. Older donor age, absence of P-glycoprotein expression at the apical membrane of tubular epithelial cells, and combined donor-recipient homozygosity for the C3435T variant in ABCB1 significantly associated with increased susceptibility to chronic allograft damage independent of graft quality at implantation. Changes in graft function over time reflected these associations with donor age and ABCB1 polymorphisms, but it was acute T cell-mediated and antibody-mediated rejection that determined early graft survival. In conclusion, the effects of older donor age reach beyond the quality of the allograft at implantation and continue to be important for histologic evolution in the posttransplantation period. In addition, ABCB1 genotype and expression of P-glycoprotein in renal tubular epithelial cells determine susceptibility to chronic tubulointerstitial damage of transplanted kidneys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.