The aim of this study is to establish the effect of task-oriented video gaming on using a myoelectric prosthesis in a basic activity of daily life (ADL). Forty-one able-bodied right-handed participants were randomly assigned to one of four groups. In three of these groups the participants trained to control a video game using the myosignals of the flexors and extensors of the wrist: in the Adaptive Catching group participants needed to catch falling objects by opening and closing a grabber and received ADL-relevant feedback during performance. The Free Catching group used the same game, but without augmented feedback. The Interceptive Catching group trained a game where the goal was to intercept a falling object by moving a grabber to the left and right. They received no additional feedback. The control group played a regular Mario computer game. All groups trained 20 minutes a day for four consecutive days. Two tests were conducted before and after training: one level of the training game was performed, and participants grasped objects with a prosthesis simulator. Results showed all groups improved their game performance over controls. In the prosthesis-simulator task, after training the Adaptive Catching group outperformed the other groups in their ability to adjust the hand aperture to the size of the objects and the degree of compression of compressible objects. This study is the first to demonstrate transfer effects from a serious game to a myoelectric prosthesis task. The specificity of the learning effects suggests that research into serious gaming will benefit from placing ADL-specific constraints on game development.
Video games that aim to improve myoelectric control (myogames) are gaining popularity and are often part of the rehabilitation process following an upper limb amputation. However, direct evidence for their effect on prosthetic skill is limited. This study aimed to determine whether and how myogaming improves EMG control and whether performance improvements transfer to a prosthesis-simulator task. Able-bodied right-handed participants (N = 28) were randomly assigned to 1 of 2 groups. The intervention group was trained to control a video game (Breakout-EMG) using the myosignals of wrist flexors and extensors. Controls played a regular Mario computer game. Both groups trained 20 minutes a day for 4 consecutive days. Before and after training, two tests were conducted: one level of the Breakout-EMG game, and grasping objects with a prosthesis-simulator. Results showed a larger increase of in-game accuracy for the Breakout-EMG group than for controls. The Breakout-EMG group moreover showed increased adaptation of the EMG signal to the game. No differences were found in using a prosthesis-simulator. This study demonstrated that myogames lead to task-specific myocontrol skills. Transfer to a prosthesis task is therefore far from easy. We discuss several implications for future myogame designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.