A B S T R A C T Fibrinoligase, the fibrin cross-linking enzyme, transiently appearing during the course of coagulation in normal blood, was shown to catalyze the incorporation of a fluorescent amine, monodansylcadaverine [or N-( 5-aminopentyl) -5-dimethylamino-1-naphthalenesulfonamide] into casein. The reaction provided the basis of a sensitive fluorimetric method for measuring the activity of the enzyme (and also of similar other transpeptidases, such as transglutaminase).In tests involving plasma, certain difficulties had to be overcome which were mainly due to the fact that the enzyme itself does not occur in citrated plasma. Only its precursor (fibrin-stabilizing factor or factor XIII) is present, still requiring limited proteolytic activation by thrombin. Thus, in order to measure amine incorporation with plasma as a source of the factor, thrombin must be added. This necessitated a differential desensitization of the intrinsic fibrinogen so that the latter could not clot and could not thereby interfere with amine incorporation. Also, the thrombin-inactivating capacity of plasma had to be saturated to enable full conversion of the factor to the transpeptidase. Concentrations of casein, monodansylcadaverine, calcium, and hydrogen ions were chosen to permit almost maximal velocity of amine incorporation. A linear relationship with regard to plasma concentration could be obtained only under such conditions. No similar assay is presently available for quantitatively evaluating fibrin-stabilizing factor levels in plasma.
A B S T R A C T Purified acid-soluble and insoluble human collagen accelerated the clotting of plateletpoor plasma in silicone-treated tubes. The clotpromoting effect did not appear to be due to thromboplastic activity since the collagen preparations did not activate factor X in the presence of factor VII and calcium. Instead, collagen appeared to accelerate clotting by activating Hageman factor (factor XII) on the basis of the following findings: collagen increased the clot-promoting activity of partially purified Hageman factor but exerted no further effect in the presence of kaolin, a known activator of Hageman factor; clot-promoting eluates were obtained from collagen exposed to normal, hemophilic, or PTC-deficient plasma but not from collagen exposed to Hageman or PTA-deficient plasma. The collagen molecule itself appeared to be required for the clot-promoting activity since digestion with collagenase or thermal denaturation at pH 2.5 (about 350C) resulted in very marked reduction in clot-promoting activity. Since thermal denaturation is associated with transformation of collagen structure from triple helical to random coil form, it is suggested that the native form of collagen is essential for the ability to activate Hageman factor.Blockage of the free amino groups by treatment with nitrous acid or dinitrofluorobenzene only slightly reduced the clot-promoting activity of collagen. In contrast, since addition of cationic proteins to collagen markedly reduced pro-coagulant activity it is suggested that negatively charged sites on the collagen molecule are critical for Hageman factor activation. This suggestion is supported by
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.