Background
For optimization of microfluidic devices for the analysis of blood samples, it is useful to simulate blood cells as elastic objects in flow of blood plasma. In such numerical models, we primarily need to take into consideration the movement and behavior of the dominant component of the blood, the red blood cells. This can be done quite precisely in small channels and within a short timeframe. However, larger volumes or timescales require different approaches. Instead of simplifying the simulation, we use a neural network to predict the movement of the red blood cells.
Results
The neural network uses data from the numerical simulation for learning, however, the simulation needs only be run once. Alternatively, the data could come from video processing of a recording of a biological experiment. Afterwards, the network is able to predict the movement of the red blood cells because it is a system of bases that gives an approximate cell velocity at each point of the simulation channel as a linear combination of bases.In a simple box geometry, the neural network gives results comparable to predictions using fluid streamlines, however in a channel with obstacles forming slits, the neural network is about five times more accurate.The network can also be used as a discriminator between different situations. We observe about two-fold increase in mean relative error when a network trained on one geometry is used to predict trajectories in a modified geometry. Even larger increase was observed when it was used to predict trajectories of cells with different elastic properties.
Conclusions
While for uncomplicated box channels there is no advantage in using a system of bases instead of a simple prediction using fluid streamlines, in a more complicated geometry, the neural network is significantly more accurate. Another application of this system of bases is using it as a comparison tool for different modeled situations. This has a significant future potential when applied to processing data from videos of microfluidic flows.
Numerical models for the flow of blood and other fluids can be used to design and optimize microfluidic devices computationally and thus to save time and resources needed for production, testing, and redesigning of the physical microfluidic devices. Like biological experiments, computer simulations have their limitations. Data from both the biological and the computational experiments can be processed by machine learning methods to obtain new insights which then can be used for the optimization of the microfluidic devices and also for diagnostic purposes. In this work, we propose a method for identifying red blood cells in flow by their stiffness based on their movement data processed by neural networks. We describe the performed classification experiments and evaluate their accuracy in various modifications of the neural network model. We outline other uses of the model for processing data from video recordings of blood flow. The proposed model and neural network methodology classify healthy and more rigid (diseased) red blood cells with the accuracy of about 99.5% depending on the selected dataset that represents the flow of a suspension of blood cells of various levels of stiffness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.