Notwithstanding the healthy influence of sporting activities on risk factors, in particular those of cardiovascular disease, it is becoming increasingly apparent that sports can present a danger to health in the form of sports injuries. The extent of the sports injury problem calls for preventative action based on the results of epidemiological research. For the interpretation of these facts uniform definitions are needed and limitations of research designs should be known. Measures to prevent sports injuries form part of what is called the 'sequence of prevention'. Firstly the extent of the sports injury problem must be identified and described. Secondly the factors and mechanisms which play a part in the occurrence of sports injuries have to be identified. The third step is to introduce measures that are likely to reduce the future risk and/or severity of sports injuries. This measure should be based on the aetiological factors and the mechanism as identified in the second step. Finally the effect of the measures must be evaluated by repeating the first step. In this review some aspects of the first and second step of the sequence of prevention are discussed. The extent of the sports injury problem is often described by injury incidence and by indicators of the severity of sports injuries. Sports injury incidence should preferably be expressed as the number of sports injuries per exposure time (e.g. per 1000 hours of sports participation) in order to facilitate the comparability of research results. However, one should realise that the outcome of research applying this definition of sports injury incidence is highly dependent on the definitions of 'sports injury' and 'sports participation'. The outcome of such research also depends on the applied research design and research methodology. The incidence of sports injuries depends on: the method used to count injuries (e.g. prospective vs retrospective); the method used to establish the population at risk; and on the representativeness of the sample. Severity of sports injuries can be described on the basis of 6 criteria: the nature of the sports injury; the duration and nature of treatment; sporting time lost; working time lost; permanent damage; and cost. Here also uniform definitions are important and necessary in order to enhance the comparability of research data. In the second step of the 'sequence of prevention' the aetiological factors that play a role in the occurrence of a sports injury have to be identified by epidemiological studies. Epidemiological research on the aetiology of sports injuries requires a conceptual model.(ABSTRACT TRUNCATED AT 400 WORDS)
Graded activity was more effective than usual care in reducing the number of days of absence from work because of low back pain.
In order to validate the "Maximal Multistage 20 Meter Shuttle Run Test" by Leger and Lambert (1982) (20-MST) as an estimate of maximal aerobic power (VO2max) and to compare the results of this test with the results of a 6 min endurance run, 82 subjects (41 boys and 41 girls) aged 12-14 performed the 20-MST and the 6 min endurance run, and had their VO2max directly measured during maximal treadmill running. The 20-MST is a maximal running test starting at a running speed of 8.0 km X h-1, which is increased every minute and in which the pace is set by an audio signal. Performing the test, one runs a 20-meter course back and forth. The test result is expressed as "palier" (one palier is approximately one minute). The mean results of the 20-MST were, for boys, 8.0 palier (+/- 1.7) and for girls, 6.4 palier (+/- 1.5). The mean results of the 6 min endurance run were for boys, 1264.4 meters (+/- 160.8), and for girls, 1103.9 meters (+/- 144.7). The mean VO2max for boys was 53.2 ml X kg-1 X min-1 (+/- 5.4) and for girls, 44.1 (+/- 4.8) ml X kg-1 X min-1. The correlation coefficient between VO2max and the 20-MST was found to be 0.68 (+/- 3.9) for boys, 0.69 (+/- 3.4) for girls and 0.76 (+/- 4.4) for both sexes, and that of VO2max with the 6 min endurance run was 0.51 (+/- 4.6) for boys, 0.45 (+/- 4.3) for girls and 0.63 (+/- 5.3) for both sexes. The conclusion is that the 20-MST is a suitable tool for the evaluation of maximal aerobic power. Although the differences in validity between the 20-MST and the 6 minutes endurance run were statistically not significant (p greater than 0.05), for reasons of practicability the 20-MST should be preferred to the 6 minutes endurance run when used in physical education classes.
The purpose of this study was to evaluate the effect of a health education intervention on running injuries. The intervention consisted of information on, and the subsequent performance of, standardized warm-up, cool-down, and stretching exercises. Four hundred twenty-one male recreational runners were matched for age, weekly running distance, and general knowledge of preventing sports injuries. They were randomly split into an intervention and a control group: 167 control and 159 intervention subjects participated throughout the study. During the 16-week study, both groups kept a daily diary on their running distance and time, and reported all injuries. In addition, the intervention group was asked to note compliance with the standardized program. At the end of the study period, knowledge and attitude were again measured. There were 23 injuries in the control group and 26 in the intervention group. Injury incidence for control and intervention subjects was 4.9 and 5.5 running injuries per 1000 hours, respectively. The intervention was not effective in reducing the number of running injuries; it proved significantly effective (P < 0.05) in improving specific knowledge of warm-up and cool-down techniques in the intervention group. This positive change can perhaps be regarded as a first step on the way to a change of behavior, which may eventually lead to a reduction of running injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.