We fabricated and investigated a 304 stainless steel and carbon nanotube (304SS-CNT) composite with an aim to study its microstructures and high-temperature tensile properties. 304SS powders were mixed with carbon nanotubes using ball milling and consolidated using the spark plasma sintering technique. Tensile specimens made from the consolidated samples of 304SS-CNT were tested in a temperature range from 299 K (26℃) to 773 K (500℃). An induction coil was used for high-temperature tensile tests. The yield strength and the work hardening of the 304SS-CNT sample were found to be higher than those of a sample fabricated from 304SS without carbon nanotubes for all tested temperatures. Microstructure analysis carried out using optical microscopy, scanning electron microscopy, and transmission electron microscopy showed that the 304SS-CNT sample has a microstructure significantly different from the 304SS sample, e.g. reduced grain size and many small cuboidal particles. Composition analysis using energy-dispersive spectroscopy revealed that the cuboidal particles are chromium carbides, and the chromium content is reduced in the 304SS-CNT matrix. Retained carbon nanotubes could not be observed; it is thought that the carbon nanotubes may decompose, induce the reduced grain size and chromium carbides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.