Abstract. Berberine (BBR) is an isoquinoline alkaloid which has a wide spectrum of clinical applications including antitumor, anti-microbial and anti-inflammatory activities. In this study, we showed that co-treatment with subtoxic doses of BBR and tumor necrosis factor-related apoptosis-inducing ligand (
The prostate-apoptosis-response-gene-4 (Par-4) is up-regulated in prostate cells undergoing programmed cell death. Furthermore, Par-4 protein has been shown to function as an effector of cell death in response to various apoptotic stimuli that trigger mitochondria and membrane receptor-mediated cell death pathways. In this study, we investigated how Par-4 modulates TRAIL-mediated apoptosis in TRAILresistant Caki cells. Par-4 overexpressing cells were strikingly sensitive to apoptosis induced by TRAIL compared with control cells. Par-4 overexpressing Caki cells treated with TRAIL showed an increased activation of the initiator caspase-8 and the effector caspase-3, together with an enforced cleavage of XIAP and c-FLIP. TRAIL-induced reduction of XIAP and c-FLIP protein levels in Par-4 overexpressing cells was prevented by z-VAD pretreatment. In addition, the surface DR5 protein level was increased in TRAIL-treated Par-4 overexpressing cells. Interestingly, even though a deletion of leucine zipper domain in Par-4 recovered Bcl-2 level to basal level induced by wild type Par-4, it partly decreased sensitivity to TRAIL in Caki cells. In addition, exposure of Caki/Par-4 cells to TRAIL led to reduction of phosphorylated Akt levels, but deletion of leucine zipper domain of Par-4 did not affect these phosphorylated Akt levels. In conclusion, we here provide evidence that ectopic expression of Par-4 sensitizes Caki cells to TRAIL via modulation of multiple targets, including DR5, Bcl-2, Akt, and NF-kB.
The transcription factor CHOP/GADD153 is induced during the unfolded protein response and is related to the induction of ER stress-mediated apoptosis. However, how CHOP is organized between the pro-survival and pro-apoptotic roles of ER stress remains largely undefined. In this study, we identified the apoptosis regulating protein suppressed by CHOP. We found that treatment of Caki cells with CHOP-inducing drugs including withaferin A, thapsigargin, brefeldin A, and silybin led to a strong reduction in cFLIP(L) protein levels together with a concomitant increase in the CHOP protein. Interestingly, Wit A down-regulated cFLIP(L) expression via both suppressing mRNA transcription and increasing cFLIPL protein instability. We also found that forced expression of CHOP dose-dependently led to a decrease of cFLIP(L) protein expression but did not alter cFLIP(L) mRNA levels. Additionally, we observed that siRNA-mediated CHOP silencing recovered the cFLIP(L) expression decreased by CHOP-inducing agents in Caki cells. Finally, we showed that CHOP facilitates ubiquitin/proteasome-mediated cFLIP(L) degradation, leading to down-regulation of cFLIP(L). Finally, cFLIP(L) over-expression reduced cell death induced by treatment with brefeldin A, thapsigargin, and silybin. Taken together, our results provide novel evidence that cFLIP(L) is a CHOP control target and that CHOP-induced down-regulation of cFLIP(L) is due to activation of the ubiquitin/proteasome pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.