IL-23 is a heterodimeric cytokine composed of a p19 subunit and the p40 subunit of IL-12. IL-23 has proinflammatory activity, inducing IL-17 secretion from activated CD4+ T cells and stimulating the proliferation of memory CD4+ T cells. We investigated the pathogenic role of IL-23 in CD4+ T cells in mice lacking the IL-1R antagonist (IL-1Ra−/−), an animal model of spontaneous arthritis. IL-23 was strongly expressed in the inflamed joints of IL-1Ra−/− mice. Recombinant adenovirus expressing mouse IL-23 (rAd/mIL-23) significantly accelerated this joint inflammation and joint destruction. IL-1β further increased the production of IL-23, which induced IL-17 production and OX40 expression in splenic CD4+ T cells of IL-1Ra−/− mice. Blocking IL-23 with anti-p19 Ab abolished the IL-17 production induced by IL-1 in splenocyte cultures. The process of IL-23-induced IL-17 production in CD4+ T cells was mediated via the activation of Jak2, PI3K/Akt, STAT3, and NF-κB, whereas p38 MAPK and AP-1 did not participate in the process. Our data suggest that IL-23 is a link between IL-1 and IL-17. IL-23 seems to be a central proinflammatory cytokine in the pathogenesis of this IL-1Ra−/− model of spontaneous arthritis. Its intracellular signaling pathway could be useful therapeutic targets in the treatment of autoimmune arthritis.
Programmed death 1 (PD-1) signaling through its ligands, PD-L1 and PD-L2, has been known to negatively regulate T-cell responses. In addition, PD-L1 has been shown to interact with B7-1 costimulatory molecule to inhibit T-cell responses. Extensive studies have shown that PD-1/PD-L blockade restores exhausted T cells during chronic viral infections and tumors. In this study, we evaluated the effects of soluble PD-1 (sPD-1) as a blockade of PD-1 and PD-L1 on vaccine-elicited antigen-specific T-cell responses in mice. Coadministration of sPD-1 DNA with human papilloma virus-16 E7 DNA vaccine significantly enhanced E7-specific CD8(+) T-cell responses, resulting in potent antitumor effects against E7-expressing tumors. We also found that sPD-1, codelivered with adenovirus-based vaccine, could increase antigen-specific CD8(+) T-cell responses, indicating vaccine type-independent adjuvant effect of sPD-1. In addition, the frequency and functional activity of adoptively transferred OT-I cells, particularly memory CD8(+) T cells, were augmented by coadministration of sPD-1 DNA, which was closely associated with increased T-cell proliferation and reduced T-cell apoptosis through upregulation of Bcl-xL expression during T-cell activation. Codelivery of sPD-1 DNA also enhanced maturation of dendritic cells (DCs) in vivo which was accompanied by upregulation of DC maturation markers such as major histocompatibility complex class II. Taken together, our findings show that sPD-1 potently enhances codelivered antigen-specific CD8(+) T-cell responses and in vivo maturation of DCs during activation of naive CD8(+) T cells, suggesting that an immunization strategy with sPD-1 as an adjuvant can be used to increase antigen-specific T-cell immunity elicited by vaccination.
Clostridium difficile toxin A is known to cause actin disaggregation through the enzymatic inactivation of intracellular Rho proteins. Based on the rapid and severe cell rounding of toxin A-exposed cells, we speculated that toxin A may be involved in post-translational modification of tubulin, leading to microtubule instability. In the current study, we observed that toxin A strongly reduced ␣-tubulin acetylation in human colonocytes and mouse intestine. Fractionation analysis demonstrated that toxin A-induced ␣-tubulin deacetylation yielded monomeric tubulin, indicating the presence of microtubule depolymerization. Inhibition of the glucosyltransferase activity against Rho proteins of toxin A by UDP-2,3-dialdehyde significantly abrogated toxin A-induced ␣-tubulin deacetylation. In colonocytes treated with trichostatin A (TSA), an inhibitor of the HDAC6 tubulin deacetylase, toxin A-induced ␣-tubulin deacetylation and loss of tight junction were completely blocked. Administration of TSA also attenuated proinflammatory cytokine production, mucosal damage, and epithelial cell apoptosis in mouse intestine exposed to toxin A. These results suggest that toxin A causes microtubule depolymerization by activation of HDAC6-mediated tubulin deacetylation. Indeed, blockage of HDAC6 by TSA markedly attenuates ␣-tubulin deacetylation, proinflammatory cytokine production, and mucosal damage in a toxin A-induced mouse enteritis model. Tubulin deacetylation is an important component of the intestinal inflammatory cascade following toxin A-mediated Rho inactivation in vitro and in vivo.Clostridium difficile is the causative pathogen of antibioticassociated diarrhea and pseudomembranous colitis in humans and animals with a 10% symptomatic infection rate among hospitalized patients (1). Two toxins, A and B, released from C. difficile, are responsible for the massive fluid secretion, apoptosis of surface colonocytes, and acute enteritis seen during infection. The two exotoxins, which share ϳ63% amino acid homology, have glucosyltransferase activity (2-4) that inactivates Rho family proteins, leading to actin disaggregation (5, 6). Monoglucosylation of Rho, Rac, and Cdc42 by toxin A at threonine 37 prevents Rho family proteins from participating in the formation of actin filaments (7). This mechanism is believed to be a main cause for the cell rounding that is characteristic of toxinexposed cells (6,8). However, despite the presence of a rapid and severe change in the shape of infected cells, the effect of toxin A on the post-translational modification of tubulin and its subsequent influence on microtubule instability have not received detailed attention.Microtubule instability is critical to cell shape (9), cell movement (10), intracellular transport of organelles (11), and the separation of chromosomes during mitosis (12). This instability results in the continual and rapid turnover of microtubules, in a process that is crucial for cytoskeletal remodeling (9 -11). Because microtubules play a pivotal role in mitosis, drugs that infl...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.