Background
Korean cosmetics are widely exported throughout Asia. Cosmetics exploiting traditional Korean medicine lead this trend; thus, the traditional medicinal literature has been invaluable in terms of cosmetic development. We sought candidate medicinal herbs for skincare.
Methods
We used data mining to investigate associations between medicinal herbs and skin-related keywords (SRKs) in a classical text. We selected 26 SRKs used in the Donguibogam text; these referred to 626 medicinal herbs. Using a term frequency-inverse document frequency approach, we extracted data on herbal characteristics by assessing the co-occurrence frequencies of 52 medicinal herbs and the 26 SRKs.
Results
We extracted the characteristics of the 52 herbs, each of which exhibited a distinct skin-related action profile. For example Ginseng Radix was associated at a high-level with tonification and anti-aging, but Rehmanniae Radix exhibited a stronger association with anti-aging. Of the 52 herbs, 46 had been subjected to at least one modern study on skincare-related efficacy.
Conclusions
We made a comprehensive list of candidate medicinal herbs for skincare
via
data mining a classical medical text. This enhances our understanding of such herbs and will help with discovering new candidate herbs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.