Green vehicles include electric vehicles, natural gas vehicles, fuel cell vehicles (FCV), and vehicles running on fuel such as a biodiesel or an ethanol blend. An FCV is equipped with a cylinder valve installed in an ultra-high pressure vessel to control the hydrogen flow. For this purpose, an optimum design of the solenoid actuator is necessary to ensure reliability when driving an FCV. In this study, an electromagnetic field analysis for ensuring reliable operation of the solenoid actuator was conducted by using Maxwell V15. The electromagnetic field analysis was performed by magneto static technique, according to the distance between magnetic poles, in order to predict the attraction force. Finally, the attraction force was validated through comparison between the Maxwell results and measurement results. From the results, the error of attraction force ranged from 2.33 to 3.85 N at testing conditions.
Article history:Micro-features such as grooves and lenses, which perform optical functions in flat displays, should be manufactured with a good form accuracy because this is directly related to their optical performance. As the size of the display increases, it is very difficult to maintain a high relative accuracy because of the inherent geometric errors such as the waviness of a large-area plate. In this paper, the optical effect of these geometric errors is investigated, and surface-referenced micro-grooving to measure and compensate for such geometric errors on line is proposed to improve the form accuracy of the micro-grooves. A PZT-based fast depth adjustment servo system is implemented in the tool holder to maintain a uniform groove depth in reference to the wavy surface. Through experiments, the proposed method is shown to be an efficient way to produce high-quality micro-grooves on a wavy die surface.
ARTICLE INFO ABSTRACTArticle history:Growing concerns about environmental pollution have led to an increase in the demand for compressed natural gas (CNG) vehicles in recent years. CNG vehicles are equipped with a cylinder valve installed in a high-pressure vessel to control the CNG flow. The cylinder valve must meet high quality safety standards because the pressure vessel stores high-pressure CNG. Therefore, safety evaluation of the cylinder valve is necessary to ensure the safety of CNG vehicles. In this study, fluid-structure interaction analysis for the structural integrity of the cylinder valve were conducted using a commercial finite element analysis code(ANSYS WORKBENCH V14). The CFD analysis was performed using a steady-state technique according to the inlet and outlet pressures in order to predict the pressure distribution. Structural analysis was performed by a static structure technique at the maximum working pressure to evaluate the structural integrity of the cylinder valve. From the results, the safety factor of the valve component is between 1.57 and 21.5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.