One hundred and seventy seven acetone extracts of lichen and 258 ethyl acetate extracts of cultured lichen-forming fungi (LFF) were screened for antimicrobial activity against Staphylococcus aureus and Enterococcus faecium using a disk diffusion method. Divaricatic acid was isolated from Evernia mesomorpha and identified by LC-MS, 1H-, 13C- and DEPT-NMR. Purified divaricatic acid was effective against Gram + bacteria, such as Bacillus subtilis, Staphylococcus epidermidis, Streptococcus mutans, and Enterococcus faecium, with the minimum inhibitory concentration (MIC) values ranging from 7.0 to 64.0 μg/mL, whereas vancomycin was effective in the MICs ranging from 0.78 to 25.0 μg/mL. Interestingly, the antibacterial activity of divaricatic acid was higher than vancomycin against S. epidermidis and E. faecium, and divaricatic acid was active against Candida albicans. In addition, divaricatic acid was active as vancomycin against S. aureus (3A048; an MRSA). These results suggested that divaricatic acid is a potential antimicrobial agent for the treatment of MRSA infections.
β-1,3-1,4-Glucanase (BGlc8H) from Paenibacillus sp. X4 was mutated by error-prone PCR or truncated using termination primers to improve its enzyme properties. The crystal structure of BGlc8H was determined at a resolution of 1.8 Å to study the possible roles of mutated residues and truncated regions of the enzyme. In mutation experiments, three clones of EP 2-6, 2-10, and 5-28 were finally selected that exhibited higher specific activities than the wild type when measured using their crude extracts. Enzyme variants of BG, BG, and BG were mutated at two, two, and six amino acid residues, respectively. These enzymes were purified homogeneously by Hi-Trap Q and CHT-II chromatography. Specific activity of BG was 2.11-fold higher than that of wild-type BG, whereas those of BG and BG were 0.93- and 1.19-fold that of the wild type, respectively. The optimum pH values and temperatures of the variants were nearly the same as those of BG (pH 5.0 and 40 °C, respectively). However, the half-life of the enzyme activity and catalytic efficiency (k /K) of BG were 1.92- and 2.12-fold greater than those of BG at 40 °C, respectively. The catalytic efficiency of BG increased to 3.09-fold that of BG at 60 °C. These increases in the thermostability and catalytic efficiency of BG might be useful for the hydrolysis of β-glucans to produce fermentable sugars. Of the six mutated residues of BG, five residues were present in mature BGlc8H protein, and two of them were located in the core scaffold of BGlc8H and the remaining three residues were in the substrate-binding pocket forming loop regions. In truncation experiments, three forms of C-terminal truncated BGlc8H were made, which comprised 360, 286, and 215 amino acid residues instead of the 409 residues of the wild type. No enzyme activity was observed for these truncated enzymes, suggesting the complete scaffold of the α/α-double-barrel structure is essential for enzyme activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.