Recently, ceramic substrates have been of great interest for use in light emitting diode (LED) packaging materials because of their excellent heat transfer capability. The thermal conductivities of ceramic-based substrates are usually one or two orders of magnitude higher than those of conventional epoxy-based substrates. The demand for ceramic substrates with high mechanical strength and thermal conductivity is also growing due to their use in thin and high-power device packaging substrates. Examples are direct bonded copper or aluminum or direct plated copper substrates for insulated gate bipolar transistors; thin and robust ceramic packages for image sensor modules that are used in mobile smart phones; ceramic packages for miniaturized chip-type supercapacitors; and high-power LED packages. This chapter will cover the development and application of ceramics and ceramic composites with high thermal conductivity for the thermal management of integrated electronic packaging substrates such as high-power LED packaging, power device packaging, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.