Abstract:In this paper, a two-dimensional (2-D) Finite Element (FE) analysis of a geothermal well was performed with respect to five different cross-sections corresponding to the design specifications for the geothermal well that is currently constructed in Pohang, South Korea. Among the essential components (such as ground formation, casing, and cementing) of a geothermal well, the thermal and mechanical stability of the cementing component was discussed based on a series of parametric studies with consideration of the thermal conductivity and Young's modulus of the cementing component. With increasing number of casing layers, the cementing component experiences less stress concentration. In addition, the lower thermal conductivity of the cementing material is advantageous for effectively controlling radial displacement. Consequently, it should be noted in geothermal well cementing construction that long-term strength degradation of the cementing might cause the severe structural instability of an entire geothermal well.
Abstract:Groundwater flow is one of the most important factors for the design of a ground heat exchanger (GHEX) since the thermal environment of the ground around the buried GHEX is significantly affected by heat convection due to the groundwater flow. Several preceding studies have been conducted to develop analytical solutions to the heat transfer model of GHEX with consideration of groundwater flow. One of these solutions is the combined heat transfer model of conduction and convection. However, the developed combined analytical models are inapplicable to all of the configurations of ordinary GHEXs because these solutions assume that the inner part of the borehole is thermally inert or consists of the same material as that of the surrounding ground. In this paper, the applicability of the combined solid cylindrical heat source model, which is the most suitable to energy piles until now, was evaluated by performing a series of numerical analyses. In the numerical analysis, the inner part of the borehole was modeled as two different materials (i.e., permeable ground formation and impermeable fill such as concrete) to evaluate applicability of the analytical solution along with different diameter-length (D/L) ratios of borehole. In a small value of the D/L ratio, the analytical solution to the combined heat transfer model is in good agreement with the result of numerical analysis. On the other hand, when increasing the D/L ratio, the analytical solution significantly overestimates the effect of groundwater flow on the heat transfer of GHEXs because the analytical solution disregards the existence of the impermeable region in the borehole. Consequently, such tendency is more critical in the GHEX with a large D/L ratio such as large-diameter energy piles.
This study demonstrates a three-dimensional numerical simulation of earth pressure balance (EPB) shield tunnelling using a coupled discrete element method (DEM) and a finite difference method (FDM). The analysis adopted the actual size of a spoke-type EPB shield tunnel boring machine (TBM) consisting of a cutter head with cutting tools, working chamber, screw conveyor, and shield. For the coupled model to reproduce the in situ ground condition, the ground formation was generated partially using the DEM (for the limited domain influenced by excavation), with the rest of the domain being composed of FDM grids. In the DEM domain, contact parameters of particles were calibrated via a series of large-scale triaxial test analyses. The model simulated tunnelling as the TBM operational conditions were controlled. The penetration rate and the rotational speed of the screw conveyor were automatically adjusted as the TBM advanced to prevent the generation of excessive or insufficient torque, thrust force, or chamber pressure. Accordingly, these parameters were maintained consistently around their set operational ranges during excavation. The simulation results show that the proposed numerical model based on DEM–FDM coupling could reasonably simulate EPB driving while considering the TBM operational conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.