Polydimethylsiloxane (PDMS)-based elastomers have become the de facto platform for various biomedical applications. But the stable attachment of biomolecules to PDMS for more robust and long-term performance of the PDMS-based devices has been a significant challenge, owing to its unique physical properties (e.g. hydrophobicity, dynamic molecular mobility). Herein, the PDMS membrane with tunable surface porosity is developed via high-pressure saturated steam technology in order to promote a strong and lasting bioadhesion to the PDMS membrane without additional processing steps. The resulting porous PDMS membranes demonstrate enhanced physical properties (e.g. Young’s modulus, roughness, and air permeability), which is dependent on the membrane thickness. The bioactivity of porous PDMS membranes, evaluated by measuring the adhesion of various biomolecules and bioactivity of cells, shows significant improvement over conventional non-porous control. This effect can be attributed to the strong physical adsorption on the porous PDMS membrane by increased surface roughness and stiffness. In sum, the porous PDMS membrane provides a simple and yet highly effective platform to create bioactive surface for various biomedical devices.
A femtosecond laser can be used for single or multiple writing processes to create sub 10-µm lines or holes directly without the use of masks. In this study, we characterized the depth and width of micro-channels created by femtosecond laser micro-scribing in polydimethylsiloxane (PDMS) under various energy doses (1%, 5%, 10%, 15% and 20%) and laser beam passes (5, 10 and 15). Based on a microfluidic simulation in a bio-application, a DNA distributor was designed and fabricated based on an energy dose of 5% and a laser beam pass of 5. The simulated depth and width of the micro-channels was 3.58 and 5.27 µm, respectively. The depth and width of the micro-channels were linearly proportional to the energy dose and the number of laser beam passes. In a DNA distribution experiment, a brighter fluorescent intensity for YOYO-1 Iodide with DNA was observed in the middle channels with longer DNA. In addition, the velocity was the lowest as estimated in the computational simulation. The polymer processability of the femtosecond laser and the bio-applicability of the DNA distributor were successfully confirmed. Therefore, a promising technique for the maskless fabrication of sub 10-µm bio-microfluidic channels was demonstrated.
It is necessary to investigate effective energy storage devices that can fulfill the requirements of short-term and long-term durable energy outputs. Here, we report a simple one-pot hydrothermal technique through which to fabricate the MoS2/Te nanocomposite to be used as an effective electrode material for high-performance supercapacitors. Comprehensive characterization of the as-fabricated nanomaterial was performed using FESEM, HRTEM, XRD, FTIR, XPS, etc., as well as electrochemical characterizations. The electrochemical characterization of the as-fabricated nanocomposite electrode material showed a high specific capacitance of 402.53 F g−1 from a galvanostatic charge-discharge (GCD) profile conducted at 1 A g−1 current density. The electrode material also showed significant rate performance with high cyclic stability reaching up to 92.30% under 4000 cycles of galvanostatic charge-discharge profile at a current density of 10 A g−1. The highly encouraging results obtained using this simple synthetic approach demonstrate that the hetero-structured nanocomposite of MoS2/Te electrode material could serve as a promising composite to use in effective supercapacitors or energy storage devices.
The three-dimensional volumetric application of conductive poly (3,4-ethylenedioxythiophene)/poly (4-styrenesulfonate) (PEDOT:PSS) to multiwalled carbon nanotubes (MWCNTs) has not been widely reported. In this study, the applicability of the 3D PEDOT:PSS-MWCNT composite for a gas sensor was investigated with different PEDOT:PSS concentrations. The gas-sensing performance of the 3D PEDOT:PSS-MWCNT composites was investigated using ethanol and carbon monoxide (CO) gas. Overall, in comparison with the pristine MWCNTs, as the PEDOT:PSS concentration increased, the 3D PEDOT:PSS-MWCNT composites exhibited increased conductivity and enhanced gas sensing performances (fast response and recovery times) to both ethanol and CO gases. Importantly, although the PEDOT:PSS coating layer reduced the number of sites for the adsorption and desorption of gas molecules, the charge-carrier transport between the gas molecules and MWCNTs was significantly enhanced. Thus, PEDOT:PSS can be chemically grafted to MWCNTs to enhance the connectivity and conductivity of a 3D network, leading to possible applications in gas sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.