Investigations of the neuro-physiological correlates of mental loads, or states, have attracted significant attention recently, as it is particularly important to evaluate mental fatigue in drivers operating a motor vehicle. In this research, we collected multimodal EEG/ECG/EOG and fNIRS data simultaneously to develop algorithms to explore neuro-physiological correlates of drivers' mental states. Each subject performed simulated driving under two different conditions (well-rested and sleep-deprived) on different days. During the experiment, we used 68 electrodes for EEG/ECG/EOG and 8 channels for fNIRS recordings. We extracted the prominent features of each modality to distinguish between the well-rested and sleep-deprived conditions, and all multimodal features, except EOG, were combined to quantify mental fatigue during driving. Finally, a novel driving condition level (DCL) was proposed that distinguished clearly between the features of well-rested and sleep-deprived conditions. This proposed DCL measure may be applicable to real-time monitoring of the mental states of vehicle drivers. Further, the combination of methods based on each classifier yielded substantial improvements in the classification accuracy between these two conditions.
The large number of automobile accidents due to driver drowsiness is a critical concern of many countries. To solve this problem, numerous methods of countermeasure have been proposed. However, the results were unsatisfactory due to inadequate accuracy of drowsiness detection. In this study, we introduce a new approach, a combination of EEG and NIRS, to detect driver drowsiness. EEG, EOG, ECG and NIRS signals have been measured during a simulated driving task, in which subjects underwent both awake and drowsy states. The blinking rate, eye closure, heart rate, alpha and beta band power were used to identify subject’s condition. Statistical tests were performed on EEG and NIRS signals to find the most informative parameters. Fisher’s linear discriminant analysis method was employed to classify awake and drowsy states. Time series analysis was used to predict drowsiness. The oxy-hemoglobin concentration change and the beta band power in the frontal lobe were found to differ the most between the two states. In addition, these two parameters correspond well to an awake to drowsy state transition. A sharp increase of the oxy-hemoglobin concentration change, together with a dramatic decrease of the beta band power, happened several seconds before the first eye closure.
We used herbal extracts in this study to investigate the effects of blue-light-induced oxidative stress on subjects' attentive performance, which is also associated with work performance. We employed an attention network test (ANT) to measure the subjects' work performance indirectly and used herbal extracts to reduce ocular oxidative stress. Thirty-two subjects participated in either an experimental group (wearing glasses containing herbal extracts) or a control group (wearing glasses without herbal extracts). During the ANT experiment, we collected electroencephalography (EEG) and electrooculography (EOG) data and measured button responses. In addition, electrocardiogram (ECG) data were collected before and after the experiments. The EOG results showed that the experimental group exhibited a reduced number of eye blinks per second during the experiment and faster button responses with a smaller variation than did the control group; this group also showed relatively more sustained tension in their ECG results. In the EEG analysis, the experimental group had significantly greater cognitive processing, with larger P300 and parietal 2–6 Hz activity, an orienting effect with neural processing of frontal area, high beta activity in the occipital area, and an alpha and beta recovery process after the button response. We concluded that reducing blue-light-induced oxidative stress with herbal extracts may be associated with reducing the number of eye blinks and enhancing attentive performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.