Accumulating evidence strongly suggests that oxidative stress underlies aging processes. Research provides consistent evidence that calorie restriction (CR) reduces age-related oxidative stress and has anti-inflammatory properties. However, information is lacking on the molecular mechanism that would better define the interrelation of reactive oxygen species and nitrogen species and the pro-inflammatory states of the aging process. In this review, the biochemical and molecular bases of the inflammatory process in the aging process are analyzed to delineate the molecular inflammation hypothesis of aging. The key players involved in the proposed hypothesis are the age-related upregulation of NF-kappa B, IL-1 beta, IL-6, TNFalpha, cyclooxygenase-2, and inducible NO synthase, all of which are attenuated by CR. Furthermore, age-related NF kappa B activation is associated with phosphorylation by I kappa B kinase/NIK and MAPKs, while CR blocked these activation processes. The modulation of these factors provides molecular insights of the anti-inflammatory action of CR in relation to the aging process. Based on available finding and our recent supporting evidence, we prefer to use "molecular inflammation" to emphasize the importance of the molecular reaction mechanisms and their aberrance, predisposing to fully expressed chronic inflammatory phenomena. It was further proposed that CR's major force of the regulation of redox-sensitive inflammation may well be its life-prolonging action.
The combined effects of aging and regular physical exercise was investigated on the production of reactive oxygen species (ROS), lipid peroxidation, glutathione status, and the activity of nuclear factor-kappaB (NF-kappaB) in rat liver. A group of 24 male F344 rats was divided into the following categories: adult control (18 months), adult exercised (18 months), and aged control (28 months) and aged exercised (28 months). The ROS formation increased as a function of age and exercise training decreased the rate of ROS formation in the two age groups. Significant positive correlation was found between ROS production and lipid peroxidation (LIPOX). The reduced glutathione (GSH) level was higher and the oxidized glutathione (GSSG) level lower in exercised groups compared with the sedentary controls (P<0.05). An age-associated increase in NF-kappaB activity was attenuated by the regular exercise. The content of p50 and p65 subunits of NF-kappaB increased with age and decreased with exercise training. The content of inhibitory factor-kappaB was inversely related to NF-kappaB activation. Regular exercise-induced adaptive responses, including attenuation of an increase in ROS production, LIPOX level, NF-kappaB activation, and reduced GSH/GSSG ratio, appear to be capable, even in old age, of reducing increases in inflammatory and other detrimental consequences that are often associated with advancing age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.