In recent years, highly sensitive pressure sensors that are flexible, biocompatible, and stretchable have attracted significant research attention in the fields of wearable electronics and smart skin. However, there has been a considerable challenge to simultaneously achieve highly sensitive, low-cost sensors coupled with optimum mechanical stability and an ultralow detection limit for subtle physiological signal monitoring devices. Targeting aforementioned issues, herein, we report the facile fabrication of a highly sensitive and reliable capacitive pressure sensor for ultralow-pressure measurement by sandwiching MXene (Ti 3 C 2 T x )/poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) composite nanofibrous scaffolds as a dielectric layer between biocompatible poly-(3,4-ethylenedioxythiophene) polystyrene sulfonate /polydimethylsiloxane electrodes. The fabricated sensor exhibits a high sensitivity of 0.51 kPa −1 and a minimum detection limit of 1.5 Pa. In addition, it also enables linear sensing over a broad pressure range (0−400 kPa) and high reliability over 10,000 cycles even at extremely high pressure (>167 kPa). The sensitivity of the nanofiber-based sensor is enhanced by MXene loading, thereby increasing the dielectric constant up to 40 and reducing the compression modulus to 58% compared with pristine PVDF-TrFE nanofiber scaffolds. The proposed sensor can be used to determine the health condition of patients by monitoring physiological signals (pulse rate, respiration, muscle movements, and eye twitching) and also represents a good candidate for a next generation human−machine interfacing device.
The rapid development of pressure sensors with distinct functionalities, notably, with increased sensitivity, fast response time, conformability, and a high degree of deformability, has increased the demand for wearable electronics. In particular, pressure sensors with an excellent sensitivity in the low-pressure range (<2 kPa) and a large working range simultaneously are strongly demanded for practical applications in wearable electronics. Here, we demonstrate an emerging class of solid polymer electrolyte obtained by incorporating a room-temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with poly(vinylidene fluoride-co-hexafluoropropylene) as a high-capacitance dielectric layer for interfacial capacitive pressure sensing applications. The solid polymer electrolyte exhibits a very high interfacial capacitance by virtue of mobile ions that serve as an electrical double layer in response to an electric field. The randomly distributed microstructures created on the solid electrolyte help the material to elastically deform under pressure. Moreover, the interfacial capacitance is improved by utilizing a highly conductive porous percolated network of silver nanowires reinforced with poly(dimethylsiloxane) as the electrodes. An ultrahigh-pressure sensitivity of 131.5 kPa–1, a low dynamic response time of ∼43 ms, a low limit of detection of 1.12 Pa, and a high stability for over 7000 cycles are achieved. Finally, we demonstrate the application of the sensor for international Morse code detection, artery pulse detection, and eye blinking. Owing to the ultrahigh sensitivity, the as-fabricated sensor will have great potential for wearable devices in health status monitoring, motion detection, and electronic skin.
Recently, flexible capacitive pressure sensors have received significant attention in the field of wearable electronics. The high sensitivity over a wide linear range combined with long-term durability is a critical requirement for the fabrication of reliable pressure sensors for versatile applications. Herein, we propose a special approach to enhance the sensitivity and linearity range of a capacitive pressure sensor by fabricating a hybrid ionic nanofibrous membrane as a sensing layer composed of Ti3C2T x MXene and an ionic salt of lithium sulfonamides in a poly(vinyl alcohol) elastomer matrix. The reversible ion pumping triggered by a hydrogen bond in the hybrid sensing layer leads to high sensitivities of 5.5 and 1.5 kPa–1 in the wide linear ranges of 0–30 and 30–250 kPa, respectively, and a fast response time of 70.4 ms. In addition, the fabricated sensor exhibits a minimum detection limit of 2 Pa and high durability over 20 000 continuous cycles even under a high pressure of 45 kPa. These results indicate that the proposed sensor can be potentially used in mobile medical monitoring devices and next-generation artificial e-skin.
Advancement of sensing systems, soft robotics, and point-of-care testing requires the development of highly efficient, scalable, and cost-effective physical sensors with competitive and attractive features such as high sensitivity, reliability, and preferably reversible sensing behaviors. This study reports a highly sensitive and reliable piezoresistive strain sensor fabricated by one-step carbonization of the MoS2-coated polyimide film to obtain MoS2-decorated laser-induced graphene. The resulting three-dimensional porous graphene nanoflakes decorated with MoS2 exhibit stable electrical properties yielding a reliable output for longer strain/release cycles. The sensor demonstrates high sensitivity (i.e., gauge factor, GF ≈1242), is hysteresis-free (∼2.75%), and has a wide working range (up to 37.5%), ultralow detection limit (0.025%), fast relaxation time (∼0.17 s), and a highly stable and reproducible response over multiple test cycles (>12 000) with excellent switching response. Owing to the outstanding performances of the sensor, it is possible to successfully detect various subtle movements ranging from phonation, eye-blinking, and wrist pulse to large human-motion-induced deformations.
Smart electronic skin (e‐skin) requires the easy incorporation of multifunctional sensors capable of mimicking skin‐like perception in response to external stimuli. However, efficient and reliable measurement of multiple parameters in a single functional device is limited by the sensor layout and choice of functional materials. The outstanding electrical properties of black phosphorus and laser‐engraved graphene (BP@LEG) demonstrates a new paradigm for a highly sensitive dual‐modal temperature and strain sensor platform to modulate e‐skin sensing functionality. Moreover, the unique hybridized sensor design enables efficient and accurate determination of each parameter without interfering with each other. The cationic polymer passivated BP@LEG composite material on polystyrene‐block‐poly(ethylene‐ran‐butylene)‐block‐polystyrene (SEBS) substrate outperforms as a positive temperature coefficient material, exhibiting a high thermal index of 8106 K (25–50 °C) with high strain sensitivity (i.e., gauge factor, GF) of up to 2765 (>19.2%), ultralow strain resolution of 0.023%, and longer durability (>18 400 cycles), satisfying the e‐skin requirements. Looking forward, this technique provides unique opportunities for broader applications, such as e‐skin, robotic appendages, and health monitoring technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.