Action observation (AO), based on the mirror neuron theory, is a promising strategy to promote motor cortical activation in neurorehabilitation. Brain computer interface (BCI) can detect a user’s intention and provide them with brain state-dependent feedback to assist with patient rehabilitation. We investigated the effects of a combined BCI-AO game on power of mu band attenuation in stroke patients. Nineteen patients with subacute stroke were recruited. A BCI-AO game provided real-time feedback to participants regarding their attention to a flickering action video using steady-state visual-evoked potentials. All participants watched a video of repetitive grasping actions under two conditions: (1) BCI-AO game and (2) conventional AO, in random order. In the BCI-AO game, feedback on participants’ observation scores and observation time was provided. In conventional AO, a non-flickering video and no feedback were provided. The magnitude of mu suppression in the central motor, temporal, parietal, and occipital areas was significantly higher in the BCI-AO game than in the conventional AO. The magnitude of mu suppression was significantly higher in the BCI-AO game than in the conventional AO both in the affected and unaffected hemispheres. These results support the facilitatory effects of the BCI-AO game on mu suppression over conventional AO.
Diabetic peripheral neuropathy (DPN) is a common complication of type 2 diabetes mellitus (DM). DPN causes a decrease in proprioception, which could reduce balance ability. We investigated the association of impaired vibration sense, based on vibration perception threshold (VPT), with assessments of balance and other factors affecting balance impairment and fear of falling in patients with type 2 DM. Sixty-three patients with DM aged >50 years were categorized as having normal vibration sense (NVS; n = 34) or impaired vibration sense (IVS; n = 29) according to a VPT value of 8.9 μm. The following parameters were evaluated for all patients: postural steadiness through the fall index using posturography, functional balance through the Berg Balance Scale (BBS), the Timed Up and Go test (TUG), and fear of falling through the Falls Efficacy Scale-International (FES-I). The IVS group showed a significantly greater balance impairment in fall index, BBS, and TUG, as well as greater fear of falling on the FES-I than the NVS group. The linear regression analysis showed that the fall index was associated only with the VPT, whereas BBS, TUG, and FES-I were associated with the VPT, age, and/or lower extremity muscle strength. VPT, age, and/or muscle strength were identified as predictors of balance and fear of falling in patients with type 2 DM. Therefore, along with age and lower extremity strength, the VPT can be useful for balance assessment in patients with type 2 DM.
Introduction: The neurotrophic drug Cerebrolysin is composed of low-molecular-weight peptides and amino acids and has been shown to have neuroprotective and neuroplastic properties. Cerebrolysin has been reported to promote the recovery of motor functions in central nervous system disorders; however, the effects on the consciousness improvements in post-stroke patients have not yet been studied extensively. Therefore, we aimed to examine the effectiveness of Cerebrolysin on improving the consciousness level of stroke patients with minimally conscious state (MCS). Materials and Methods: In this retrospective study we included ischemic and/or hemorrhagic stroke patients with MCS according to the Coma Recovery Scale-Revised (CRS-R), who were admitted to our hospital between 2014 and 2017. All patients received comprehensive rehabilitation therapy including physical and occupational therapy. We compared patients treated with Cerebrolysin against patients who did not receive Cerebrolysin. Patients were included in the verum group if they received 10 mL of Cerebrolysin IV for at least 20 days. CRS-R scores were assessed at admission and discharge. Results: Of 1,531 patients screened, 75 were included in the study (Cerebrolysin, n = 43; control, n = 32). Baseline characteristics were similar between groups. At discharge, ~2 months after onset of stroke, Cerebrolysin-treated patients improved significantly in the CRS-R ( p = 0.010) after adjustment for confounders using linear mixed model (LMM), especially in the Oromotor ( p = 0.003) and Arousal subscales ( p = 0.038). No safety issues were observed. Conclusion: This retrospective study suggests that Cerebrolysin may improve the level of consciousness in stroke patients with MCS, which should be further investigated in a well-designed, double-blind, placebo-controlled, randomized trial.
The final version may contain major or minor changes.Subscription: Information about subscribing to Minerva Medica journals is online at: http://www.minervamedica.it/en/how-to-order-journals.php Reprints and permissions: For information about reprints and permissions send an email to:
BACKGROUND: This study focused on developing an upper limb rehabilitation program. In this regard, a steady state visual evoked potential (SSVEP) triggered brain computer interface (BCI)-functional electrical stimulation (FES) based action observation game featuring a flickering action video was designed. OBJECTIVE: In particular, the synergetic effect of the game was investigated by combining the action observation paradigm with BCI based FES. METHODS: The BCI-FES system was contrasted under two conditions: with flickering action video and flickering noise video. In this regard, 11 right-handed subjects aged between 22–27 years were recruited. The differences in brain activation in response to the two conditions were examined. RESULTS: The results indicate that T3 and P3 channels exhibited greater Mu suppression in 8–13 Hz for the action video than the noise video. Furthermore, T4, C4, and P4 channels indicated augmented high beta (21–30 Hz) for the action in contrast to the noise video. Finally, T4 indicated suppressed low beta (14–20 Hz) for the action video in contrast to the noise video. CONCLUSION: The flickering action video based BCI-FES system induced a more synergetic effect on cortical activation than the flickering noise based system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.