A novel, high-temperature, thermally conductive, microporous coating (HTCMC) is developed by brazing copper particles onto a copper surface. This coating is more durable than many previous microporous coatings and also effectively creates re-entrant cavities by varying brazing conditions. A parametric study of coating thicknesses of 49–283 μm with an average particle size of ∼25 μm was conducted using the HTCMC coating to understand nucleate boiling heat transfer (NBHT) enhancement on porous surfaces. It was found that there are three porous coating regimes according to their thicknesses. The first regime is “microporous” in which both NBHT and critical heat flux (CHF) enhancements gradually grow as the coating thickness increases. The second regime is “microporous-to-porous transition” where NBHT is further enhanced at lower heat fluxes but decreases at higher heat fluxes for increasing thickness. CHF in this regime continues to increase as the coating thickness increases. The last regime is named “porous,” and both NBHT and CHF decrease as the coating thickness increases beyond that of the other two regimes. The maximum NBHT coefficient observed was ∼350,000 W/m2K at 96 μm thickness (microporous regime) and the maximum CHF observed was ∼2.1 MW/m2 at ∼225 μm thickness (porous regime).
Superhydrophilic Nano-Structured Coatings (SHNC) were discovered during pool boiling experiments using nanofluids with alumina nanoparticles. During nucleate boiling, the nanoparticles are deposited on the heater surface, forming a uniform oxide coating. These coatings have been demonstrated to greatly decrease the liquid contact angle observed on the surfaces, both by increased surface roughness and increased surface energy. An illustration of this roughness, within 1 μm thickness, can be seen in the 3-D optical microscope mapping of a SHNC surface, top right. These highly wetting structures can greatly enhance macro-level mass transfer effects, such as capillary action. The series of images on the left depict the wickability enhancement achieved by SHNC coating inside a 0.92 mm internal diameter aluminum tube. In the tube coated with SHNC, a 21 μl water droplet disappeared in 183 milliseconds, resulting in an average wicking speed along the pipe of 17 cm/sec. The bare aluminum tube does not wick at all, even as it is pushed into the droplet. The bottom right sequence shows the wettability enhancement responsible for this behavior; an 8 μl water droplet is dropped onto both a SHNC-coated and a bare aluminum surface from a height of 1 cm. The droplet on the SHNC-coated surface spreads instantaneously due to the high wettability of the SHNC, while the droplet on the bare aluminum remains aggregated as a hemisphere.
A novel, high-temperature, thermally-conductive, microporous coating (HTCMC) is developed by brazing copper particles onto a copper surface. This coating is more durable than many previous microporous coatings and also effectively creates reentrant cavities by optimizing brazing conditions. A parametric study of coating thicknesses of 49–283 μm with an average particle size of ∼25 μm was conducted using the HTCMC coating to understand nucleate boiling heat transfer (NBHT) enhancement on porous surfaces. It was found that there are three porous coating regimes according to their thicknesses. The first regime is “microporous” in which both NBHT and critical heat flux (CHF) enhancements gradually grow as the coating thickness increases. The second regime is “microporous-to-porous transition” where NBHT is further enhanced at lower heat fluxes but decreases at higher heat fluxes for increasing thickness. CHF in this regime continues to increase as the coating thickness increases. The last regime is named as “porous”, and both NBHT and CHF decrease as the coating thickness increases further than that of the other two regimes. The maximum nucleate boiling heat transfer coefficient observed was ∼350,000 W/m2K at 96 μm thickness (“microporous” regime) and the maximum CHF observed was ∼2.1 MW/m2 at ∼225 μm thickness (“porous” regime).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.