The goal of this work is to provide an abstraction of ideal sound environments to a new emerging class of Mobile Multispeaker Audio (MMA) applications. Typically, it is challenging for MMA applications to implement advanced sound features (e.g., surround sound) accurately in mobile environments, especially due to unknown, irregular loudspeaker configurations. Towards an illusion that MMA applications run over specific loudspeaker configurations (i.e., speaker type, layout), this work proposes AMAC, a new Adaptive Mobile Audio Coordination system that senses the acoustic characteristics of mobile environments and controls individual loudspeakers adaptively and accurately. The prototype of AMAC implemented on commodity smartphones shows that it provides the coordination accuracy in sound arrival time in several tens of microseconds and reduces the variance in sound level substantially.
A variety of advantages from sounds such as measurement and accessibility introduces a new opportunity for mobile applications to offer broad types of interesting, valuable functionalities, supporting a richer user experience. However, in spite of the growing interests on mobile sound applications, few or no works have been done in focusing on managing an audio device effectively. More specifically, their low level of real-time capability for audio resources makes it challenging to satisfy tight timing requirements of mobile sound applications, e.g., a high sensing rate of acoustic sensing applications. To address this problem, this work presents the SounDroid framework, an audio device management framework for real-time audio requests from mobile sound applications. The design of SounDroid is based on the requirement analysis of audio requests as well as an understanding of the audio playback procedure including the audio request scheduling and dispatching on Android. It then incorporates both real-time audio request scheduling algorithms, called EDF-V and AFDS, and dispatching optimization techniques into mobile platforms, and thus improves the quality-ofservice of mobile sound applications. Our experimental results with the prototype implementation of SounDroid demonstrate that it is able to enhance scheduling performance for audio requests, compared to traditional mechanisms (by up to 40% improvement), while allowing deterministic dispatching latency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.