This study aims to identify fashion trends with design features and provide a consumer-driven fashion design application in digital dynamics, by using text mining and semantic network analysis. We examined the current role and approach of fashion forecasting and developed a trend analysis process using consumer text data. This study focuses on analyzing blog posts regarding fashion collections. Specifically, we chose the jacket as our fashion item to produce practical results for our trend report, as it is an item used in multiple seasons and can be representative of fashion as a whole. We collected 29,436 blog posts from the past decade that included the keywords “jacket” and “fashion collection.” After the data collection, we established a list of fashion trend words for each design feature by classifying styles (e.g., retro), colors (e.g., black), fabrics (e.g., leather), and patterns (e.g., checkered). A time-series cluster analysis was used to categorize fashion trends into four clusters—increasing, decreasing, evergreen, and seasonal trends—and a semantic network analysis visualized the latest season’s dominant trends along with their corresponding design features. We concluded that these results are useful as they can reduce the time-consuming process of fashion trend analysis and offer consumer-driven fashion design guidelines.
This study aimed to use quantitative methods and deep learning techniques to report sportive fashion trends. We collected sportive fashion images from fashion collections of the past decades and utilized the multi-label graph convolutional network (ML-GCN) model to detect and explore hybrid styles. Based on the literature review, we proposed a theoretical framework to investigate sportive fashion trends. The ML-GCN was designed to classify five style categories, “street,” “retro,” “sexy,” “modern,” and “sporty,” and the predictive probabilities of the five styles of fashion images were extracted. We statistically validated the hybrid style results derived from the ML-GCN model and suggested an application method of deep learning-based trend reports in the fashion industry. This study reported sportive fashion by hybrid style dependency, forecasting, and brand clustering. We visualized the predicted probability for a hybrid style to a three-dimensional scale expected to help designers and researchers in the field of fashion to achieve digital design innovation cooperating with deep learning techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.