This work describes the development of a new technique to measure local liquid velocity (VLL) for multiphase flows in trickle bed reactors (TBRs) (gas–liquid–solid system). In the studied TBR, the liquid phase is represented by water, gas by air and 3 mm expanded polystyrene beads as the solid packing. Three different superficial liquid velocities (VSL) and a constant superficial gas velocity (VSG) were used in the packed bed with an internal diameter of 4.25 cm. While the liquid is moving into the packed bed, tracking particles of 106–125 μm diameter (16.45% difference) are injected. The movement of the tracking particles is monitored and digitally recorded by a complementary metal–oxide–semiconductor detector. In this experiment, x-rays were used as the radiation source. Four replications were made with fresh packing. Comparable observations can be found from other published techniques (i.e. magnetic resonance imaging). Results from this study indicate that, at VSL = 0.13 cm s−1, the measured VLL can reach up to 51 times that of its VSL, while for VSL = 0.27 cm s−1, the measured VLL reached up to 35 times higher than the VSL and for VSL = 0.39 cm s−1, the VLL reached up to 39.8 times higher than its VSL. Through statistical analysis, the implementation of such a method is found to be reproducible throughout the experiments. The mean per cent difference in the measured VLL was 10% and 5% for lower implemented VSL of 0.13 and 0.27 cm s−1, respectively. At higher VSL (0.39 cm s−1), the particle tracer was greatly distributed and carried away by the high liquid flow rate. The variance or the range of the measured VLL does not vary for all replications in every VSL, which confirms the reproducibility of the experimental measurements, regardless of the VSL.
Local liquid velocity measurements in Trickle Bed Reactors (TBRs) are one of the essential components in its hydrodynamic studies. These measurements are used to effectively determine a reactor's operating condition. This study was conducted to validate a newly developed technique that combines Digital Industrial Radiography (DIR) with Particle Tracking Velocimetry (PTV) to measure the Local Liquid Velocity (V(LL)) inside TBRs. Three millimeter-sized Expanded Polystyrene (EPS) beads were used as packing material. Three validation procedures were designed to test the newly developed technique. All procedures and statistical approaches provided strong evidence that the technique can be used to measure the V(LL) within TBRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.