The TallyHo (TH) mouse strain is a polygenic model for Type 2 diabetes with obesity. Genetic analysis in backcross progeny from a cross between F1 [C57BL/6J (B6) x TH] and TH mice mapped a quantitative trait locus (QTL) named TH-associated body weight 2 (tabw2) to chromosome 6. The TH-derived allele is associated with increased body weight. As a first step to identify the molecular basis of this obesity QTL, we constructed a congenic line of mice on the B6 genetic background that carries a genomic region from TH mice containing tabw2. Congenic mice homozygous for tabw2 (B6.TH-tabw2/tabw2) fed a chow diet exhibited slightly, but significantly, higher body weight and body fat and plasma leptin levels compared with controls (B6.TH-+/+). This difference was exacerbated when the animals were maintained on a high-fat and high-sucrose (HFS) diet. The diet-induced obesity in tabw2 congenic mice is accompanied by hyperleptinemia, mild hyperinsulinemia, impaired glucose tolerance, and reduced glucose uptake in adipose tissue in response to insulin administration. Using F2 progeny fed a HFS diet from an intercross of B6.TH-tabw2/+ mice, we were able to refine the map position of the tabw2 obesity susceptibility locus to a 15-cM region (95% confidence interval) extending distally from the marker D6Mit102. In summary, tabw2 congenic mice are a new animal model for diet-induced obesity that will be valuable for the study of gene-diet interactions.
BackgroundType 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.ResultsIn order to determine the genetic factors that contribute to these T2D related characteristics in TH mice, we interbred TH mice with C57BL/6J (B6) mice. The parental, F1, and F2 mice were phenotyped at 8, 12, 16, 20, and 24 weeks of age for 4-hour fasting plasma triglyceride, cholesterol, insulin, and glucose levels and body, fat pad and carcass weights. The F2 mice were genotyped genome-wide and used for quantitative trait locus (QTL) mapping. We also applied a genetical genomic approach using a subset of the F2 mice to seek candidate genes underlying the QTLs. Major QTLs were detected on chromosomes (Chrs) 1, 11, 4, and 8 for hypertriglyceridemia, 1 and 3 for hypercholesterolemia, 4 for hyperglycemia, 11 and 1 for body weight, 1 for fat pad weight, and 11 and 14 for carcass weight. Most alleles, except for Chr 3 and 14 QTLs, increased phenotypic values when contributed by the TH strain. Fourteen pairs of interacting loci were detected, none of which overlapped the major QTLs. The QTL interval linked to hypercholesterolemia and hypertriglyceridemia on distal Chr 1 contains Apoa2 gene. Sequencing analysis revealed polymorphisms of Apoa2 in TH mice, suggesting Apoa2 as the candidate gene for the hyperlipidemia QTL. Gene expression analysis added novel information and aided in selection of candidates underlying the QTLs.ConclusionsWe identified several genetic loci that affect the quantitative variations of plasma lipid and glucose levels and obesity traits in a TH × B6 intercross. Polymorphisms in Apoa2 gene are suggested to be responsible for the Chr 1 QTL linked to hypercholesterolemia and hypertriglyceridemia. Further, genetical genomic analysis led to potential candidate genes for the QTLs.
Genetic factors are strongly involved in the development of obesity, likely through the interactions of susceptibility genes with obesigenic environments, such as high-fat, high-sucrose (HFS) diets. Previously, we have established a mouse congenic strain on C57BL/6 J background, carrying an obesity quantitative trait locus (QTL), tabw2, derived from obese diabetic TALLYHO/JngJ mice. The tabw2 congenic mice exhibit increased adiposity and hyperleptinemia, which becomes exacerbated upon feeding HFS diets. In this study, we conducted genome-wide gene expression profiling to evaluate differentially expressed genes between tabw2 and control mice fed HFS diets, which may lead to identification of candidate genes as well as insights into the mechanisms underlying obesity mediated by tabw2. Both tabw2 congenic mice and control mice were fed HFS diets for 10 weeks beginning at 4 weeks of age, and total RNA was isolated from liver and adipose tissue. Whole-genome microarray analysis was performed and verified by real-time quantitative RT-PCR. At False Discovery Rate adjusted P < 0.05, 1026 genes were up-regulated and 308 down-regulated in liver, whereas 393 were up-regulated and 187 down-regulated in adipose tissue in tabw2 congenic mice compared to controls. Within the tabw2 QTL interval, 70 genes exhibited differential expression in either liver or adipose tissue. A comprehensive pathway analysis revealed a number of biological pathways that may be perturbed in the diet-induced obesity mediated by tabw2.
Hypertriglyceridemia (HTG) is the dominant dyslipidemia in type 2 diabetes (T2D). The aim of this study was to elucidate genetic networks underlying the HTG in a polygenic model for T2D, TALLYHO/JngJ (TH) mice. We conducted a large‐scale microarray gene expression analysis using 16 F2 male mice from a (C57BL/6J x TH) F1 intercross; 8 each from the upper and lower tails for plasma triglyceride distribution of 400 F2 mice. At 24 wk, mice were killed, and liver, muscle, and pancreas were collected and the total RNA isolated and hybridized on the mouse genome 430 2.0 array (Affymetrix). Mice were also genotyped with 68 genetic markers spaced across the whole genome. Individual probe data were extracted using Bioconductor, and the gcRMA normalization was used to produce a signal measure for each gene. Statistical analysis was performed using SAS software, and a mixed ANOVA model was run on the normalized data, fitting genotype and tissue effects, and using array variation as the experimental error. Genes with significant (p<0.05) ANOVA interaction, and significant pair‐wise False Discovery Rate were considered differentially expressed, identifying 1377 in pancreas, 494 in muscle, and 1094 genes in liver. Examining differentially expressed genes using known pathway networks revealed the insulin signaling pathway as the most commonly enriched category in the three tissues tested. American Diabetes Association 7‐04‐RA‐52
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.