Hydrogen sensor technologies have been rapidly developing. For effective and safe sensing, we proposed a hydrogen sensor composed of magnesium (Mg), silver (Ag), and palladium (Pd) nano-blocks that overcomes the spectral resolution limit. This sensor exploited the properties of Mg and Pd when absorbing hydrogen. Mg became a dielectric material, and the atomic lattice of Pd expanded. These properties led to changes in the plasmonic gap mode between the nano-blocks. Owing to the changing gap mode, the far-field scattering pattern significantly changed with the hydrogen concentration. Thus, sensing the hydrogen concentration was able to be achieved simply by detecting the far-field intensity at a certain angle for incident light with a specific wavelength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.