Recently, patients with mutations in DOCK8 have been reported to have a combined immunodeficiency characterized by cutaneous viral infections and allergies. Natural killer (NK) cells represent a first-line defense against viral infections suggesting that DOCK8 might participate in NK cell function. In this study, we demonstrate that DOCK8-suppressed human NK cells showed defects in natural cytotoxicity as well as specific activating receptor-mediated NK cytotoxicity. Additionally, compared to control NK cells, NK cells depleted of DOCK8 showed defective conjugate formation, along with decreased polarization of LFA-1, F-actin, and cytolytic granules toward the cytotoxic synapse. Using a proteomic approach we found that DOCK8 exists in a macromolecular complex with the Wiskott-Aldrich Syndrome protein, an actin nucleation promoting factor activated by CDC42, as well as talin, which is required for integrin-mediated adhesion. Taken together, our results demonstrate an important role for DOCK8 in NK cell effector function and provide important new mechanistic insight into how DOCK8 regulates F-actin and integrin-mediated adhesion in immune cells.
SUMMARY Mutations in the E3 ubiquitin ligase Parkin have been linked to familial Parkinson's disease. Parkin has also been implicated in mitosis through mechanisms that are unclear. Here we show that Parkin interacts with anaphase promoting complex/cyclosome (APC/C) co-activators Cdc20 and Cdh1 to mediate the degradation of several key mitotic regulators independent of APC/C. We demonstrate that ordered progression through mitosis is orchestrated by two distinct E3 ligases through the shared use of Cdc20 and Cdh1. Furthermore, Parkin is phosphorylated and activated by polo-like kinase 1 (Plk1) during mitosis. Parkin deficiency results in overexpression of its substrates, mitotic defects, genomic instability and tumorigenesis. These results suggest that the Parkin-Cdc20/Cdh1 complex is an important regulator of mitosis.
Natural killer (NK) cells are lymphocytes of the innate immune system that secrete cytokines upon activation and mediate the killing of tumor cells and virus-infected cells, especially those that escape the adaptive T cell response caused by the down regulation of MHC-I. The induction of cytotoxicity requires that NK cells contact target cells through adhesion receptors, and initiate activation signaling leading to increased adhesion and accumulation of F-actin at the NK cell cytotoxic synapse. Concurrently, lytic granules undergo minus-end directed movement and accumulate at the microtubule-organizing center through the interaction with microtubule motor proteins, followed by polarization of the lethal cargo toward the target cell. Ultimately, myosin-dependent movement of the lytic granules toward the NK cell plasma membrane through F-actin channels, along with soluble N-ethylmaleimide-sensitive factor attachment protein receptor-dependent fusion, promotes the release of the lytic granule contents into the cleft between the NK cell and target cell resulting in target cell killing. Herein, we will discuss several disease-causing mutations in primary immunodeficiency syndromes and how they impact NK cell-mediated killing by disrupting distinct steps of this tightly regulated process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.