We report the effects of antimony (Sb) surfactant on the growth and correlated structural and optical properties of non-catalytic GaAs nanowires (NW) grown by selective area epitaxy on silicon. Strong enhancements in the axial growth with very high aspect ratio up to 50 are observed by the addition of small traces of Sb (1%–2%), contrasting the commonly reported growth limiting behavior of Sb in GaAs(Sb) NWs. The Sb surfactant effect modifies the growth facet structure from a pyramidal-shaped growth front terminated by {1–1–0} planes to a flat (111)B growth plane, that is even further improved by the presence of Si co-dopants. Additional benefits are seen by the substantial change in microstructure, from a heavily defected layer stacking in Sb-free GaAs NWs to a twinned phase-pure zinc blende structure in Sb-mediated GaAs(Sb) NWs. We directly confirm the impact of the altered microstructure on the optical emission and carrier recombination dynamics via observation of long, few-ns carrier lifetimes in the GaAs(Sb) NWs using steady-state and time-resolved photoluminescence spectroscopy.
Free-standing III-V semiconductor nanowires (NW) are very attractive materials due to their unique physical properties Vapor-liquid-solid (VLS) growth is the mainstream method in realizing advanced semiconductor nanowires (NWs), as widely applied to many III-V compounds. It is exclusively explored also for antimony (Sb) compounds, such as the relevant GaAsSb-based NW materials, although morphological inhomogeneities, phase segregation, and limitations in the supersaturation due to Sb strongly inhibit their growth dynamics. Fundamental advances are now reported here via entirely catalyst-free GaAsSb NWs, where particularly the Sb-mediated effects on the NW growth dynamics and physical properties are investigated in this novel growth regime. Remarkably, depending on GaAsSb composition and nature of the growth surface, both surfactant and anti-surfactant action is found, as seen by transitions between growth acceleration and deceleration characteristics. For threshold Sb-contents up to 3-4%, adatom diffusion lengths are increased ≈sevenfold compared to Sb-free GaAs NWs, evidencing the significant surfactant effect. Furthermore, microstructural analysis reveals unique Sb-mediated transitions in compositional structure, as well as substantial reduction in twin defect density, ≈tenfold over only small compositional range (1.5-6% Sb), exhibiting much larger dynamics as found in VLS-type GaAsSb NWs. The effect of such extended twin-free domains is corroborated by ≈threefold increases in exciton lifetime (≈4.5 ns) due to enlarged electron-hole pair separation in these phase-pure NWs.
Recent progress in III-V nanowire (NW) light sources integrated onto Si (quantum) photonic circuits is presented, illustrating key results for low-threshold vertical-cavity NW-lasers and integrated NW-quantum emitters with efficient light coupling to Si waveguides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.