Autosomal polycystic kidney disease (ADPKD) is a common inherited renal disease characterized by the development of numerous fluid-filled cysts in both kidneys. We investigated miRNA-mediated regulatory systems and networks that play an important role during cystogenesis through integrative analysis of miRNA- and RNA-seq using two ADPKD mouse models (conditional Pkd1- or Pkd2-deficient mice), at three different time points (P1, P3, and P7). At each time point, we identified 13 differentially expressed miRNAs (DEmiRs) and their potential targets in agreement with cyst progression in both mouse models. These targets were involved in well-known signaling pathways linked to cystogenesis. More specifically, we found that the actin cytoskeleton pathway was highly enriched and connected with other well-known pathways of ADPKD. We verified that miR-182-5p regulates actin cytoskeleton rearrangement and promotes ADPKD cystogenesis by repressing its target genes—Wasf2, Dock1, and Itga4—in vitro and in vivo. Our data suggest that actin cytoskeleton may play an important role in renal cystogenesis, and miR-182-5p is a novel regulator of actin cytoskeleton and cyst progression. Furthermore, this study provides a systemic network of both key miRNAs and their targets associated with cyst growth in ADPKD.
Autosomal polycystic kidney disease (ADPKD) is a highly prevalent genetic renal disorder in which epithelial-lining fluid-filled cysts appear in kidneys. It is accompanied by hyperactivation of cell proliferation, interstitial inflammation, and fibrosis around the cyst lining cells, finally reaching end-stage renal disease. Previously, we found high expression of ligands stimulating the receptor for advanced glycation end products (RAGE) in ADPKD mice. Furthermore, gene silencing of RAGE was revealed to cause reduction of cystogenesis via down-regulation of cell proliferation in vitro, and intravenous administration of anti-RAGE adenovirus in vivo also displayed alleviation of the disease. Here, we attempted to identify the role of soluble RAGE (sRAGE) in inhibiting the progression of ADPKD using 2 different ADPKD mouse models. sRAGE is an endogenously expressed form of RAGE that has no membrane-anchoring domain, thereby giving it the ability to neutralize the ligands that stimulate RAGE signals. Both overexpression of sRAGE and sRAGE treatment blocked RAGE-mediated cell proliferation in vitro. In addition, sRAGE-injected ADPKD mice showed reduced cysts accompanied by enhanced renal function, inhibition of cell proliferation, inflammation, and fibrosis. These positive therapeutic effects of sRAGE displayed little liver toxicity, suggesting it as a new potential therapeutic target of ADPKD with low side effects.
Diverse signaling pathways have been reported to be associated with polycystic kidney disease (PKD). Cell proliferation is widely known to be an important pathway related to this disease. However, studies on the interactions of inflammation and fibrosis with polycystic kidney disease have been limited. Inflammation is one of the protective systems involved in the response to foreign molecules. In PKD, it was reported that the activity of signaling pathways associated with inflammation is increased. Also, fibrosis is the development of excess fibrous tissue in organ or tissue. It is an abnormal phenomenon in which the extent of fibrous connective tissues is increased. In PKD, increases in the activity of molecules such as growth factor and TGF-β have been reported to occur and promote fibrosis. Therefore, the inflammation and fibrosis responses have been suggested as therapeutic targets for PKD. In order to guide further studies, this review indicates the roles of inflammatory and fibrosis signaling in PKD.
Background Polycystic kidney disease (PKD) involves renal cysts arising from proliferating tubular cells. Autophagy has been recently suggested as a potential therapeutic target in PKD, and mammalian target of rapamycin (mTOR) is a key negative regulator of autophagy. However, the effect of autophagy regulation on cystogenesis has not been elucidated in PKD mice. Methods Clinical validation was performed using GEO datasets and autosomal dominant polycystic kidney disease (ADPKD) patient samples. Newly established PKD and LC3 transgenic mice were used for in vivo verifications, and additional tests were performed in vitro and in vivo using multiple autophagy drugs. Findings Neither autophagy stimulation nor LC3 overexpression alleviated PKD. Furthermore, we observed the inhibitory effect of an autophagy inhibitor on cysts, indicating its possible therapeutic use in a specific group of patients with ADPKD. Interpretation Our findings provide a novel insight into the pathogenesis related to autophagy in PKD, suggesting that drugs related to autophagy regulation should be considered with caution for treating PKD. Funding Sources This work was supported by grants from the Bio & Medical Technology Development Program; the Collaborative Genome Program for Fostering New Post-Genome Industry of the NRF; the Basic Science Program.
Autophagy is a catabolic process required for maintaining intracellular energy homeostasis. It eliminates harmful proteins and recycles functional macromolecules back into the cell via cargo breakdown. Autophagy is generally suppressed under fed conditions and induced by serum starvation; therefore, it is considered to be a nutrientsensing mechanism. Cilia, finger-like organelles harboring multiple receptors along their surface, are energy-sensing structures that are also triggered by serum deprivation. Herein, we verified the effect of autophagy alterations on cilia assembly and the specific underlying mechanisms. Autophagy flux altered either by drugs or autophagy-targeting siRNAs strongly inhibited ciliogenesis, and this inhibition was affected by p62, an autophagy regulator, via Pten/Dvl2/AurKA signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.