Samples of cobalt-doped neodymium orthoferrite compounds, NdCo
x
Fe
1−x
O
3
(0.0 ≤ x ≤ 0.5) were synthesized via glycine auto-combustion between 250 and 300°C and calcined at 500°C for 2 h. X-ray diffraction showed that all compounds had an orthorhombic perovskite structure with space group Pbnm. Increasing cobalt doping gradually reduced the lattice parameters and contracted the unit cell volume. Both X-ray diffraction and scanning electron microscopy showed that the particles were spherical and in the nano-sized range (19–52 nm) with pores between grains. Vibrating sample magnetometry at room temperature indicated that NdFeO
3
has a high coercive field (1950 Oe) and cobalt substitution for iron led to a decrease in the coercive field, saturation and remanent magnetization, which was as a result of decreased magnetic moments in the crystal and reduced canting of the FeO
6
octahedra. The increase in magnetization and coercive fields with increase of Co was connected to the microstructure (bond lengths and angles, defects, pores, grain boundaries) and crystallite size. The compounds NdCo
x
Fe
1−x
O
3
show antiferromagnetism with weak ferromagnetism due to uncompensated non-collinear moments. These compounds could serve as prototypes for tuning the properties of magnetic materials (ferromagnetic and antiferromagnetic) with potential applications in data storage, logic gates, switches and sensors.
Improving on the very high temperatures used in solid-state synthesis routes to prepare CCTO ignited the idea of using oxalate routes which make use of organic solvents in the synthesis of CCTOX as oxalate intermediates to the decomposition product, CCTO. The use of commercial oxalic acids and oxalate has not only recorded a solubility problem which reflects on the size, shape, homogeneity, and morphology of the final product but also has an environmental impact originating from the solvents used. Both the composition and morphology of these inhomogeneities play a role in the behaviour of the final product, pointing out the need to assess the dependence of size, shape, homogeneity, and morphology and the material performance on the sample synthesis history. In this study, nanosized particles of calcium copper titanium oxide, CaCu3Ti4O12 (CCTO), were successfully synthesized by pyrolysis of the corresponding heterometal oxalate precursors obtained via coprecipitation using the edible carambola fruit juice as a precipitating agent and investigated in detail. The precursors were characterized, and the results revealed the formation of a single molecular precursor represented by the formula CaCu3(TiO)4(C2O4)8·9H2O (CCTOX). The decomposition products, obtained via calcination in air, were subsequently subjected to thermal treatments at different temperatures for 4 hours. The morphology and microstructure were characterized, and analysis showed the formation of a single phase, CaCu3Ti4O12 (CCTO) with CuO and CaTiO3 as impurity. It was observed from microscopy that the samples obtained from sintering at 600°C for four hours had discrete particles with regular morphology, limited size distribution, high degree of homogeneity, and multiple dimensions ranging between 10 and 35 nm and showed some degree of ellipticity in shape. Increasing the sintering temperature from 600°C to 700°C and 800°C increased the grain growth in the ceramic as well as the densification. The method makes advantage of the fact that oxalate precursors decomposed at relatively lower temperatures and the fact that the oxalate in the juice is in the solution which downplays both the solubility and environmental pollution problems since no additional solvents are used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.