Since growing tumors stimulate angiogenesis, via vascular endothelial growth factor (VEGF), angiogenesis inhibitors (AIs, blockers of the VEGF signaling pathway) have been introduced to cancer therapy. However, AIs often yielded only modest and short-lived gains in cancer patients and more invasive tumor phenotypes in animal models. Combining anti-VEGF strategies with lactate uptake blockers may boost both efficacy and safety of AIs. We assessed this hypothesis by using the ex ovo chorioallantoic membrane (CAM) assay. We show that AI-based monotherapy (Avastin®, AVA) increases tumor hypoxia in human CAM cancer cell xenografts and cell spread in human as well as canine CAM cancer cell xenografts. In contrast, combining AVA treatment with lactate importer MCT1 inhibitors (α-cyano-4-hydroxycinnamic acid (CHC) or AZD3965 (AZD)) reduced both tumor growth and cell dissemination of human and canine explants. Moreover, combining AVA+AZD diminished blood perfusion and tumor hypoxia in human explants. Thus, the ex ovo CAM assay as an easy, fast and cheap experimental setup is useful for pre-clinical cancer research. Moreover, as an animal-free experimental setup the CAM assay can reduce the high number of laboratory animals used in pre-clinical cancer research.
Erythropoietin receptor (EPOR) is widely expressed in healthy and malignant tissues. In certain malignancies, EPOR stimulates tumor growth. In healthy tissues, EPOR controls processes other than erythropoiesis, including mitochondrial metabolism. We hypothesized that EPOR also controls the mitochondrial metabolism in cancer cells. To test this hypothesis, we generated EPOR-knockdown cancer cells to grow tumor xenografts in mice and analyzed tumor cellular respiration via high-resolution respirometry. Furthermore, we analyzed cellular respiratory control, mitochondrial content, and regulators of mitochondrial biogenesis in vivo and in vitro in different cancer cell lines. Our results show that EPOR controls tumor growth and mitochondrial biogenesis in tumors by controlling the levels of both, pAKT and inducible NO synthase (iNOS). Furthermore, we observed that the expression of EPOR is associated with the expression of the mitochondrial marker VDAC1 in tissue arrays of lung cancer patients, suggesting that EPOR indeed helps to regulate mitochondrial biogenesis in tumors of cancer patients. Thus, our data imply that EPOR not only stimulates tumor growth but also regulates tumor metabolism and is a target for direct intervention against progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.