Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
The CIAOW study (Complicated intra-abdominal infections worldwide observational study) is a multicenter observational study underwent in 68 medical institutions worldwide during a six-month study period (October 2012-March 2013). The study included patients older than 18 years undergoing surgery or interventional drainage to address complicated intra-abdominal infections (IAIs).1898 patients with a mean age of 51.6 years (range 18-99) were enrolled in the study. 777 patients (41%) were women and 1,121 (59%) were men. Among these patients, 1,645 (86.7%) were affected by community-acquired IAIs while the remaining 253 (13.3%) suffered from healthcare-associated infections. Intraperitoneal specimens were collected from 1,190 (62.7%) of the enrolled patients.827 patients (43.6%) were affected by generalized peritonitis while 1071 (56.4%) suffered from localized peritonitis or abscesses.The overall mortality rate was 10.5% (199/1898).According to stepwise multivariate analysis (PR = 0.005 and PE = 0.001), several criteria were found to be independent variables predictive of mortality, including patient age (OR = 1.1; 95%CI = 1.0-1.1; p < 0.0001), the presence of small bowel perforation (OR = 2.8; 95%CI = 1.5-5.3; p < 0.0001), a delayed initial intervention (a delay exceeding 24 hours) (OR = 1.8; 95%CI = 1.5-3.7; p < 0.0001), ICU admission (OR = 5.9; 95%CI = 3.6-9.5; p < 0.0001) and patient immunosuppression (OR = 3.8; 95%CI = 2.1-6.7; p < 0.0001).
Background Non-operative management (NOM) of acute appendicitis has been assessed in several studies before COVID-19 pandemic. This systematic review aimed to assess the extent of adoption, efficacy, and safety of NOM of acute appendicitis in the setting of COVID-19. Methods This was a PRISMA-compliant systematic review of the literature. Electronic databases and Google Scholar were queried for studies that applied NOM of acute appendicitis during COVID-19. The main outcome measures were the rates of NOM application during the pandemic as compared to the pre-pandemic period, failure and complication rates of NOM. Failure was defined as the need for appendectomy during NOM and complications included development of appendicular mass or abscess. Results Fourteen studies (2140 patients) were included. The male to female ratio was 1.44:1 and median age was 34. Nine hundred fifty-nine (44.8%) patients had a trial of NOM. The weighted mean rate of NOM application was 50.1% (95%CI: 29.8–70.5%). The application of NOM during the pandemic was significantly more likely than its application before COVID-19 (OR = 6.7, p < 0.001). The weight mean failure rate of NOM was 16.4% (95%CI: 9.4–23.4). NOM failure was more likely in children and patients with complicated appendicitis. The weighted mean complication rate after NOM was 4.5% (95%CI: 1.4–7.7). NOM had significantly lower odds for complications than appendectomy (OR = 0.36, p = 0.03). There was no mortality after application of NOM. Conclusion NOM of acute appendicitis in the setting of COVID-19 may be a safe, short-term alternative to surgery with acceptably low failure and complication rates. Supplementary Information The online version contains supplementary material available at 10.1007/s11605-021-04988-1.
The association between schistosomiasis and colorectal malignancy has long been suggested in the literature, but it is not uniformly accepted. In the Far East, considerable evidence supports an etiological link between Schistosoma japonicum and colorectal cancer. However, the available data regarding the role of Schistosoma mansoni in colorectal carcinogenesis are conflicting and most often do not show causality. We report on a patient with sigmoid colonic cancer coexisting with schistosomiasis, and we provide a comprehensive review of the literature regarding the epidemiology and pathobiology of this association.
SARS-CoV-2 has been associated with an increased rate of venous thromboembolism in critically ill patients. Since surgical patients are already at higher risk of venous thromboembolism than general populations, this study aimed to determine if patients with peri-operative or prior SARS-CoV-2 were at further increased risk of venous thromboembolism. We conducted a planned sub-study and analysis from an international, multicentre, prospective cohort study of elective and emergency patients undergoing surgery during October 2020. Patients from all surgical specialties were included. The primary outcome measure was venous thromboembolism (pulmonary embolism or deep vein thrombosis) within 30 days of surgery. SARS-CoV-2 diagnosis was defined as peri-operative (7 days before to 30 days after surgery); recent (1-6 weeks before surgery); previous (≥7 weeks before surgery); or none. Information on prophylaxis regimens or pre-operative anti-coagulation for baseline comorbidities was not available. Postoperative venous thromboembolism rate was 0.5% (666/123,591) in patients without SARS-CoV-2; 2.2% (50/2317) in patients with peri-operative SARS-CoV-2; 1.6% (15/953) in patients with recent SARS-CoV-2; and 1.0% (11/1148) in patients with previous SARS-CoV-2. After adjustment for confounding factors, patients with peri-operative (adjusted odds ratio 1.5 (95%CI 1.1-2.0)) and recent SARS-CoV-2 (1.9 (95%CI 1.2-3.3)) remained at higher risk of venous thromboembolism, with a borderline finding in previous SARS-CoV-2 (1.7 (95%CI 0.9-3.0)). Overall, venous thromboembolism was independently associated with 30-day mortality ). In patients with SARS-CoV-2, mortality without venous thromboembolism was 7.4% (319/4342) and with venous thromboembolism was 40.8% (31/76). Patients undergoing surgery with peri-operative or recent SARS-CoV-2 appear to be at increased risk of postoperative venous thromboembolism compared with patients with no history of SARS-CoV-2 infection. Optimal venous thromboembolism prophylaxis and treatment are unknown in this cohort of patients, and these data should be interpreted accordingly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.