Exosomes are nano-sized vesicles that serve as mediators for cell-to-cell communication. With their unique nucleic acids, proteins, and lipids cargo compositions that reflect the characteristics of producer cells, exosomes can be utilized as cell-free therapeutics. Among exosomes derived from various cellular origins, mesenchymal stem cell-derived exosomes (MSC-exosomes) have gained great attention due to their immunomodulatory and regenerative functions. Indeed, many studies have shown anti-inflammatory, anti-aging and wound healing effects of MSC-exosomes in various in vitro and in vivo models. In addition, recent advances in the field of exosome biology have enabled development of specific guidelines and quality control methods, which will ultimately lead to clinical application of exosomes. This review highlights recent studies that investigate therapeutic potential of MSC-exosomes and relevant mode of actions for skin diseases, as well as quality control measures required for development of exosome-derived therapeutics.
Atopic dermatitis (AD) is a multifactorial, heterogeneous disease associated with epidermal barrier disruption and intense systemic inflammation. Previously, we showed that exosomes derived from human adipose tissue-derived mesenchymal stem cells (ASC-exosomes) attenuate AD-like symptoms by reducing multiple inflammatory cytokine levels. Here, we investigated ASC-exosomes’ effects on skin barrier restoration by analyzing protein and lipid contents. We found that subcutaneous injection of ASC-exosomes in an oxazolone-induced dermatitis model remarkably reduced trans-epidermal water loss, while enhancing stratum corneum (SC) hydration and markedly decreasing the levels of inflammatory cytokines such as IL-4, IL-5, IL-13, TNF-α, IFN-γ, IL-17, and TSLP, all in a dose-dependent manner. Interestingly, ASC-exosomes induced the production of ceramides and dihydroceramides. Electron microscopic analysis revealed enhanced epidermal lamellar bodies and formation of lamellar layer at the interface of the SC and stratum granulosum with ASC-exosomes treatment. Deep RNA sequencing analysis of skin lesions demonstrated that ASC-exosomes restores the expression of genes involved in skin barrier, lipid metabolism, cell cycle, and inflammatory response in the diseased area. Collectively, our results suggest that ASC-exosomes effectively restore epidermal barrier functions in AD by facilitating the de novo synthesis of ceramides, resulting in a promising cell-free therapeutic option for treating AD.
Recent studies have suggested that dietary factors, specifically glycaemic load, may be involved in the pathogenesis of acne. The aim of this study was to determine the clinical and histological effects on acne lesions of a low glycaemic load diet. A total of 32 patients with mild to moderate acne were randomly assigned to either a low glycaemic load diet or a control group diet, and completed a 10-week, parallel dietary intervention trial. Results indicate successful lowering of the glycaemic load. Subjects within the low glycaemic group demonstrated significant clinical improvement in the number of both non-inflammatory and inflammatory acne lesions. Histopathological examination of skin samples revealed several characteristics, including reduced size of sebaceous glands, decreased inflammation, and reduced expression of sterol regulatory element-binding protein-1, and interleukin-8 in the low glycaemic load group. A reduction in glycaemic load of the diet for 10 weeks resulted in improvements in acne.
Acne vulgaris is a highly prevalent skin disorder characterized by hyperseborrhea, inflammation, and Propionibacterium acnes overgrowth. Only isotretinoin and hormonal therapy reduce sebum production. To identify a new drug candidate that modulates sebum, we examined the effects of EGCG, the major polyphenol in green tea, on human SEB-1 sebocytes and in patients with acne. In SEB-1 sebocytes, we found that EGCG reduced sebum by modulating the AMPK-SREBP-1 signaling pathway. EGCG also reduces inflammation by suppressing the NF-κB and AP-1 pathways. EGCG also induces cytotoxicity of SEB-1 sebocytes via apoptosis and decreases the viability of P. acnes, thus targeting almost all the pathogenic features of acne. Finally, and most importantly, EGCG significantly improved acne in an 8-week randomized, split-face, clinical trial, and was well tolerated. Our data provide a therapeutic rationale for the use of EGCG in acne.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.