The driving performance of an off-road vehicle is closely related to soil strength. A bevameter is used to measure the soil strength, and it usually consists of two independent devices: a pressure–sinkage test device and a shear test device. However, its development and measurement processes have not been standardized; thus, researchers apply it in various fields according to their own discretion. In this study, a new bevameter was developed, and experiments were conducted to clarify the factors that affect the measurement performance of the bevameter. The pressure–sinkage test device was tested with circular plates of different sizes, and the results confirmed that the pressure–sinkage parameters decreased with the plate size. For the shear-test device, normal pressure was applied using a dead load to prevent normal-pressure variation due to displacement and speed. In addition, a spline was installed on top of the shaft connected to the shear ring to measure slip sinkage during the shear test. The results showed that the slip sinkage increased in proportion to the normal pressure and slip displacement, but the increase gradually decreased and converged to a certain point.
In this study, the design and driving performance evaluation of a driving system for driving on deformable terrain was performed using terramechanics theory and multi-body dynamics simulation. For the design of the driving system, the mechanical interaction of track-terrain was analyzed using a Bekker-based model. Based on the analyzed results, the design of a track suitable for the deformable terrain to be driven and selection of a power source (engine, transmission, etc.) were carried out. A multi-body simulation model of the tracked vehicle reflecting the designed track and the selected power source was developed, and a ground model reflecting the mechanical property of terrain was also developed to analyze the mechanical interaction of the track-terrain through simulation. In addition, each link constituting the track was modeled as a 6 DOF spring/damper system to consider the track's tension force and load distribution under the track, and through this, different ground pressure and soil thrust were applied according to the motion state of each link. Finally, driving performance analyses were performed using the developed tracked vehicle, and as a result, it was confirmed that the driving requirements of the tracked vehicle were satisfied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.