The angiopoietin (Ang) family of growth factors includes Ang1, Ang2, Ang3, and Ang4, all of which bind to the endothelial receptor tyrosine kinase Tie2. Ang3 (mouse) and Ang4 (human) are interspecies orthologs. In experiments with human endothelial cell lines, Ang3 was identified as an antagonist of Tie2 and Ang4 was identified as an agonist of Tie2. However, the biological roles of Ang3 and Ang4 are unknown. We examined the biological effect of recombinant Ang3 and Ang4 proteins in primary cultured endothelial cells and in vivo in mice. Recombinant Ang3 and Ang4 formed disulfide-linked dimers. Ang4 (400 ng/mL) markedly increased Tie2 and Akt phosphorylation in primary cultured HUVECs whereas Ang3 (400 ng/mL) did not produce significant changes. Accordingly, Ang4, but not Ang3, induced survival and migration in primary cultured HUVECs. Unexpectedly, intravenously administered Ang3 (30 microg) was more potent than Ang4 (30 microg) in phosphorylating the Tie2 receptor in lung tissue from mice in vivo. Accordingly, Ang3 was more potent than Ang4 in phosphorylating Akt in primary cultured mouse lung microvascular endothelial cells. Ang3 and Ang4 both produced potent corneal angiogenesis extending from the limbus across the mouse cornea in vivo. Thus, Ang3 and Ang4 are agonists of Tie2, but mouse Ang3 has strong activity only on endothelial cells of its own species.
Fractalkine is an unusual tumor necrosis factor (TNF)-alpha-induced chemokine. The molecule is tethered to cells that express it and produces strong and direct adhesion to leukocytes expressing fractalkine receptor. However, the potential mechanism and significance of TNF-alpha-induced fractalkine expression in vascular endothelial cells are poorly understood. Here we show that in primary cultured endothelial cells TNF-alpha-induced fractalkine mRNA expression is mediated mainly through phosphatidylinositol 3'-kinase activation and nuclear factor (NF)-kappaB mediated transcriptional activation, along with GC-rich DNA-binding protein-mediated transcription. Interestingly, GC-rich DNA-binding protein inhibitors, mithramycin A and chromomycin A3, strongly suppressed TNF-alpha-induced fractalkine mRNA expression, possibly through inhibition of transcriptional activities by NF-kappaB and Sp1. In fact, direct inhibition of NF-kappaB and Sp1 bindings by decoy oligonucleotides suppressed TNF-alpha-induced fractalkine expression. Histologically, TNF-alpha-induced fractalkine expression was observed markedly in arterial and capillary endothelial cells, endocardium, and endothelium of intestinal villi, and slightly in venous endothelial cells, but not at all in lymphatic endothelial cells of intestine. Mithramycin A markedly suppressed TNF-alpha-induced fractalkine expression in vivo. These results indicate that TNF-alpha-stimulated fractalkine expression could act as part of arterial endothelial adhesion to leukocytes and monocytes during inflammation and atherosclerosis. NF-kappaB and Sp1 inhibitors such as mithramycin A may provide a pharmacological approach to suppressing these processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.