ABSTRACT. 2,3,7, is one of the most toxic environmental pollutants that cause various biological effects on mammals. The purpose of our study was to identify the genes involved in hepatotoxicity and hepatocarcinogenesis caused by TCDD. C57BL/6 (AhR+/+, wild type) and B6.129-AhR/J (AhR-/-, knock out) mice were injected i.p. with a single treatment of TCDD at the dose of 100 µg/kg body weight. Relative liver weight was significantly increased at 72 hr after TCDD treatment without an apparent histopathological change in AhR+/+ mice (p<0.05). TCDD treatment also significantly increased activity of serum alanine aminotransferase in AhR-/-mice (p<0.05). The liver was analyzed for gene expression profiles 72 hr later. As compared with AhR-/-mice, the expression of 51 genes (>3-fold) was changed in AhR+/+ mice; 28 genes were induced, while 23 genes were repressed. Most of the genes were associated with chemotaxis, inflammation, carcinogenesis, acute-phase response, immune responses, cell metabolism, cell proliferation, signal transduction, and tumor suppression. This study suggests that the microarray analysis of genes in the liver of AhR+/+ and AhR-/-mice may help to clarify the mechanism of AhR-mediated hepatotoxicity and hepatocarcinogenesis by TCDD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.