It has been known that FAC, LDIE, cavitation and flashing are the damage mechanisms that can cause the pipe thickness of the secondary system of nuclear power plants thinner. Severe wall thinning was found in the MSR drain pipes at a Korean nuclear power plant a decade ago, and all the affected pipes were replaced with low alloy steel with higher chromium contents. Therefore, this study was conducted to reduce the possibility of similar thinning cases that may occur in the future by identifying the exact cause of thinning. ToS-PACE and FLUENT codes and theoretical evaluation method were applied to analyze the causes of thinning. ToSPACE and FLUENT analyses and theoretical evaluation including all the operating conditions show a relatively large pressure drop and a pressure lower than the saturated vapor pressure in common at the end of the pipe entering the condenser. This means that flashing occurs at the end of the pipe under all operating conditions, and the effect can be greater than that of other parts. As a result, since severe wall thinning occurred at the end of the pipeline entering the condenser, it was evaluated that flashing by the high-velocity two-phase fluid was the direct cause of the wall thinning in the MSR drain pipes. The results of this study will contribute to establishing appropriate countermeasures in the event of pipe wall thinning in the future.
A number of piping components in the secondary system of nuclear power plants (NPPs) have been exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, LDIE (Liquid Droplet Impingement Erosion), and SPE (Solid Particle Erosion). Those mechanisms may lead to thinning, leaking, or the rupture of components. Due to the pipe ruptures caused by wall thinning of Surry Unit 2 in 1986 and Mihama Unit 3 in 2004, pipe wall thinning management has emerged as one of the most important issues in the nuclear industry. To manage the wall thinning of pipes caused by FAC and erosion, KEPCO-E & C has developed ToSPACE program. It can predict both FAC & erosion phenomena, and also be utilized in the pipe wall thinning management works such as susceptibility analysis, UT (Ultrasonic Test) data evaluation as well as establishment of long-term inspection plan. Even though the ToSPACE can predict the five aging mechanisms mentioned above, only the FAC prediction result using ToSPACE was compared herein with the experimental result using FACTS (Flow Accelerated Corrosion Test System) to verify the ToSPACE's capability. In addition, the FAC prediction result using ToSPACE was also compared with that of CHECWORKS that is widely used all over the world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.